

Robust Stochastic Gr/Aph **Generator for Counterfactual** Explanations

Bardh Prenkaj

Presented at The 38th Annual AAAI Conference on Artificial Intelligence

Graph Counterfactual Explainability (GCE)

 Φ 419.48 p 399.5 m 19.74 419.48 n 41,934.92 m 21.01 司 76回 200,391.90 m

Problems with GCE

- SoA is generally constrained to the input data (search-based GCE) and relies on learned perturbation masks (learning-based GCE)
- Defaulting to factual-based explainers falters when dual classes clash (e.g., acyclic vs cyclic graphs)
- Crossing the decision boundary isn't enough; one must be close to the original instance

What's been done until now...

- Learning-based GCE [1-5]: 1) generate masks of relevant features given a graph G; 2) combine this mask with G to derive G'; 3) feed G' to the oracle Φ and update the mask
- CLEAR [5] uses a VAE to encode graphs into a latent representation which, at inference, is used to generate complete stochastic graphs
- G-CounteRGAN [6,7] relies on 2D convolutions on the adjacency matrix of graphs

Intuition

- Using a generative approach possibly a GAN allows having brand new in-distribution counterfactuals examples
- We'll exploit the generator to engender counterfactual candidates
- Use the discriminator to guide the generator in learning how to cross the decision boundary

A closer look at RSGG-CE

reconstruct features

RSGG-CE (inference)

reconstruct features

RSGG-CE (inference)

Algorithm 1: Partial order sampling to produce a counterfactual.

Require: $G_* = (X_*, A_*), \mathbb{G} : \mathcal{G} \to \mathcal{G}, \Phi,$ 1: $\hat{X}_*, A_* + \hat{A}_* = \mathbb{G}(X_*, A_*)$ 2: $X_q, A_q \leftarrow \hat{X}_*, A_* + \hat{A}_*$ 3: $\mathcal{P} \leftarrow \text{partial}_\text{order}(A_*)$ 4: $A' \leftarrow 0^{n \times n}$ 5: for $\mathbb{O} \in \mathcal{P}$ do for $e = (u, v) \in \mathbb{O}.\mathcal{E}$ do 6: $A'[u,v] \leftarrow \text{sample}(e, A_q[u,v])$ 7: 8: if $\mathbb{O}.o \wedge \Phi(X_q, A') \neq \Phi(X_*, A_*)$ then return (X_q, A') 9: end if 10: end for 11: 12: end for 13: return (X_*, A_*)

Require: $A \in \mathbb{R}^{n \times n}$

- guard o. 4: return \mathcal{P}

Algorithm 2: Example of partial_order

▷ *Get the set of edges* 1: $E \leftarrow \text{positive_edges}(A)$ from the adjacency matrix A 2: $\neg E \leftarrow \text{negative}_{edges}(A)$ \triangleright *Get the set of* non-existing edges from the adjacency matrix A 3: $\mathcal{P} \leftarrow \{(\mathcal{E} = E, o = 0), (\mathcal{E} = \neg E, o = 1)\} \triangleright Build the partial$ order of the existing and non-existing edges with group tuples consisting of edge set \mathcal{E} , and oracle verification

Pretty good actually when you have <u>dual</u> classes.

Lessons learned through **RSGG-CE**

RSGG-CE has a gain of 66.98% and 19.65% in correctness.

		Methods				
		MEG †	CF^2 †	CLEAR ‡	G-CounteRGAN ‡	RSGG-CE ‡
TC	Runtime (s) \downarrow	272.110	4.811	25.151	632.542	0.083
	$\text{GED}\downarrow$	159.700	27.564	61.686	182.414	11.000
	Oracle Calls ↓	0.000	0.000	4341.600	1321.000	<u>121.660</u>
	Correctness ↑	<u>0.530</u>	0.496	0.504	0.504	0.885
	Sparsity \downarrow	2.510	0.496	1.110	3.283	0.199
	Fidelity ↑	<u>0.530</u>	0.496	0.504	0.504	0.885
	Oracle Acc. ↑	1.000	1.000	1.000	1.000	1.000
ASD	Runtime (s) \downarrow	×	15.313	275.884	969.255	80.000
	$\text{GED}\downarrow$	×	<u>655.661</u>	1479.114	3183.729	234.853
	Oracle Calls ↓	×	0.000	5339.455	1182.818	<u>794.805</u>
	Correctness ↑	X	0.463	<u>0.554</u>	0.529	0.603
	Sparsity \downarrow	×	0.850	1.917	4.125	0.304
	Fidelity ↑	×	0.287	<u>0.319</u>	0.265	0.287
	Oracle Acc. ↑	×	0.773	0.773	0.773	0.773

We don't care about larger graphs. Results depend only on dataset complexity

Number of nodes n per instance

Performance stabilizes when the number of instances is greater than 500.

We scale perfectly when the number of nodes in a cycle increases (GED plateaus, and correctness is 1).

Even when the number of cycles increases, we don't need as many edge-cutting operations.

We can do both edge additions and removals

We perform a lot less perturbation on the graphs vs CLEAR

TreeCycles@28

ASD

References

- Abrate, C.; and Bonchi, F. 2021. Counterfactual graphs for explainable classification of brain networks. In KDD'21
- Liu, Y.; Chen, C.; Liu, Y.; Zhang, X.; and Xie, S. 2021. Multi-objective Explanations of GNN Predictions. In ICDM'21
- Nguyen, T. M.; Quinn, T. P.; Nguyen, T.; and Tran, T. 2022. Explaining Black Box Drug Target Prediction through Model Agnostic Counterfactual Samples. IEEE/ACM Transactions on Computational Biology and Bioinformatics
- Numeroso, D.; and Bacciu, D. 2021. Meg: Generating molecular counterfactual explanations for deep graph networks. In IJCNN'21
- Ma, J.; Guo, R.; Mishra, S.; Zhang, A.; and Li, J. 2022. CLEAR: Generative Counterfactual Explanations on Graphs. In NeurIPS'22
- Nemirovsky, D.; Thiebaut, N.; Xu, Y.; and Gupta, A. 2022. CounteRGAN: Generating counterfactuals for real-time recourse and interpretability using residual GANs. In UAI'22
- Prado-Romero, M. A.; Prenkaj, B.; and Stilo, G. 2023. Revisiting CounteRGAN for Counterfactual Explainability of Graphs. In ICLR'23 @ Tiny Paper Track

Food for Thought

Finding counterfactuals is mathematically equivalent to adversarially attacking a predictor, but they have different social connotations

