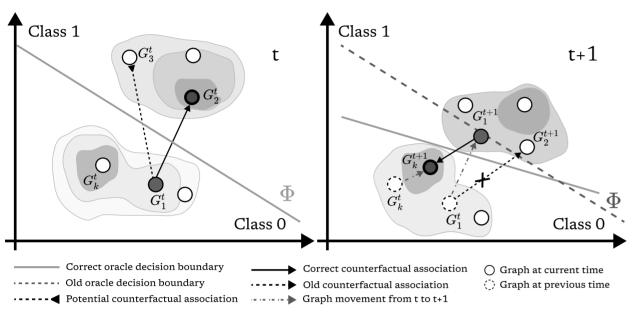
August 25 - 29, 2024 International Barcelona Convention Center Barcelona, Catalonia


Vol. 30 No. 902

NEWS FOR TODAY

FULL PAPER

UNIFYING EVOLUTION, EXPLANATION, AND DISCERNMENT

A GENERATIVE APPROACH FOR DYNAMIC GRAPH COUNTERFACTUALS

What happens when counterfactuals get obsolete as time passes?

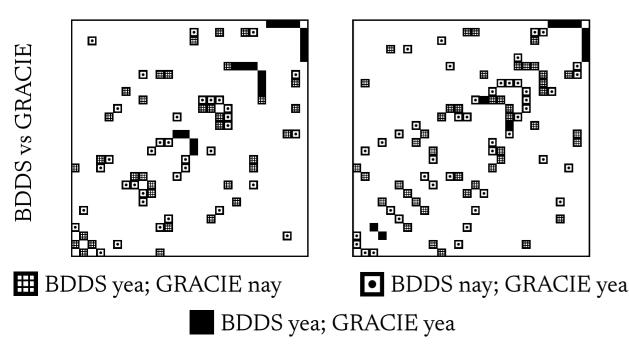
Bardh Prenkaj et al. Technical University of Munich

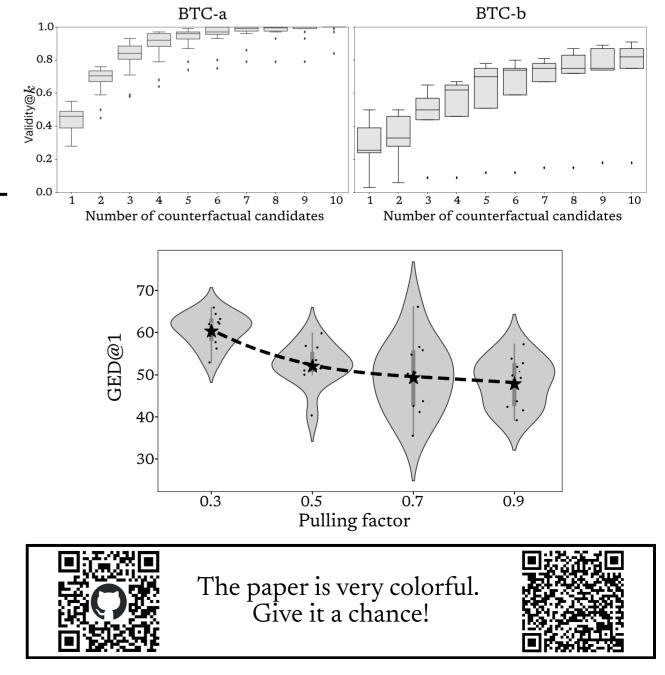
Counterfactuals and Temporal Data.

In dynamic environments, decision boundaries change over time, leading to the invalidation of counterfactuals that were once valid.

Need for Dynamic Updates.

To maintain the reliability of counterfactual explanations, it is crucial to develop mechanisms that adapt to evolving data distributions.


Search for top-k counterfactual candidates at inference time.


	DTC	DBLP	BTC-a	BTC-b	BNZ
BDDS	0.465	<u>0.381</u>	<u>0.360</u> *	0.235	0.136
MEG	0.250	0.209	-	0.260	0.120^{*}
CLEAR	0.458	0.024	0.214	0.125	0.000
G-CRGAN	0.507	0.256	0.236	-	0.404
DyGRACE	<u>0.525</u>	0.307	0.232	0.000^{*}	0.232
GRACIE	0.600	0.442	0.440	0.284	0.441

Ensuring Validity Over Time

Our approach proposes a method to dynamically update counterfactuals, ensuring they remain valid even as underlying data distributions change.

GRACIE is a self-adapting dynamic model for generative classification and counterfactual generation of time graphs.

