TL;DR: We propose MoCoDAD that leverages probabilistic diffusion models and conditioning on past motions to accurately detect anomalies by comparing generated motions with expected futures.

Multimodal Motion Conditioned Diffusion Model for **Skeleton-based Video Anomaly Detection**

Alessandro Flaborea, Luca Collorone, Guido D'Amely, Stefano D'Arrigo, Bardh Prenkaj, Fabio Galasso

Video Anomaly Detection

- Skeleton-based Video Anomaly Detection (VAD)
- Anomalies are rare \rightarrow learn from regular samples only (**OCC**) or cope with data imbalance
- SoA are constrained to represent a limited latent volume
- Forcing normality into a volume may not work for **diverse-but-still-normal** behaviors

How the literature approached VAD

- Latent-based VAD [1,2] scoring data points that fall outside the learned latent space, which represents normality
- Reconstruction-based VAD [3,4] assess how well the model can reconstruct normal input, resulting in higher error rates for anomalies
- · Skeleton-based VAD [5-8] methods exploit compact spatio-temporal skeletal representations of human motion instead of raw video frames

[1] M. Sabokrou et al. Deep-cascade: Cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes. IEEE Fransactions on Image Processing, 26(4):1992–2004, 2017

[2] N.T. Nguyen et al. Anomaly detection with multiple-hypotheses predictions. In ICML ,pages 4800–4809. PMLR, 2019

[3] W. Liu et al. Future frame prediction for anomaly detection-a new baseline. In CVPR, pages 6536–6545, 2018

[4] A. Barbalau et al. Ssmtl++: Revisiting self-supervised multi-task learning for video anomaly detection. CVIU, 2023

[5] R. Morais et al. Learning regularity in skeleton trajectories for anomaly detection in videos. In CVPR, pages 11996–12004, 2019

[6] W. Luo et al. Normal graph: Spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection. Neurocomputing, 444:332–337, 2021

[7] A. Markovitz et al. Graph embedded pose clustering for anomaly detection. In CVPR, pages 10539–10547, 2020

[8] A. Flaborea et al. Contracting Skeletal Kinematic Embeddings for Anomaly Detection. arXiv preprint arXiv:2301.09489, 2023

- on past poses
- the coordinates of the joints via a random displacement map \rightarrow the reverse process unrolls the corruption via estimating this map

$$\mathcal{L}_{disp} = \mathbb{E}_{t,X,arepsilon} igg[\left| \left| arepsilon - arepsilon_{ heta}ig(X_t,t,hig)
ight|
ight] \ \mathcal{L}_{smooth} = \ igg\{ egin{array}{c} 0.5 \cdot (\mathcal{L}_{disp})^2 & ext{if} \left| \mathcal{L}_{disp}
ight| < 1 \ |\mathcal{L}_{disp}
ight| = 0.5 & ext{otherwise} \end{array}$$

- statistically to detect anomalies
- Conditioning: Pass the conditioning of past frames through an encoder, then provide them to all latent layers of the denoising model
- The conditioning embedding adds an auxiliary reconstruction loss

$$\mathcal{L}_{rec} = \left\| D(E(X^{1:k})) - X^{1:k}
ight)$$

 $\mathcal{L}_{tot} = \lambda_1 \mathcal{L}_{smooth} + \lambda_2 \mathcal{L}_{rec}$

Proposed Approach

MoCoDAD learns to reconstruct the future corrupted poses by conditioning

• **Training**: Forward + reverse diffusion process \rightarrow the forward process corrupts

• Inference: Generate multi-modal future sequences of poses from random displacement maps, conditioned on past frames, then aggregates them

4

Take-away lessons

		HR-STC	HR-Avenue	HR-UBnormal	UBnorn
Conv-AE	CVPR'16	69.8	84.8	-	_
Pred	CVPR'18	72.7	86.2	-	-
MPED-RNN *	CVPR'19	75.4	86.3	61.2	60.6
GEPC *	CVPR'20	74.8	58.1	55.2	53.4
Multi-timescale Prediciton *	WACV'20	77.0	88.3	-	-
Normal Graph	Neurocompuring'21	76.5	87.3	-	-
PoseCVAE *	ICPR'21	75.7	87.8	-	-
BIPOCO *	Arxiv'22	75.9	87.0	52.3	50.7
STGCAE-LSTM *	Neurocomputing'22	77.2	86.3	-	-
SSMTL++	CVIU'23	-	-	-	62.1
COSKAD *	Arxiv'23	77.1	87.8	65.5	65.0
MoCoDAD *		77.6	89.0	68.4	68.3

- Multiple potential futures improve MoCoDAD predictions by reducing penalties on hard-still-normal samples, considered as abnormal by deterministic models
- Normal conditioning motions are centered around the true future; abnormal conditioning makes the ground truth lie on the edge of the predictions' region

• AUC positively correlates with the number of generated future motions for quantiles Q < 0.5, while the correlation is negative for the mean estimate and Q > 0.5

