TL,DR: We propose MoCoDAD that leverages
probabilistic diffusion models and conditioning
on past motions to accurately detect anomalies
by comparing generated motions with expected
futures.

0 Video Anomaly Detection

Skeleton-based Video Anomaly Detection (VAD)

- Anomalies are rare = learn from regular samples only (OCC) or cope with data
imbalance

SOA are constrained to represent a limited latent volume

Forcing normality into a volume may not work for diverse-but-still-normal
behaviors

MoCoDAD
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e How the literature approached VAD

Latent-based VAD [1,2] scoring data points that fall outside the learned latent
space, which represents normality

Reconstruction-based VAD [3,4] assess how well the model can
reconstruct normal input, resulting in higher error rates for anomalies

Skeleton-based VAD [5-8] methods exploit compact spatio-temporal
skeletal representations of human motion instead of raw video frames
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Proposed Approach

Forward Diffusion Conditioning
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MoCoDAD learns to reconstruct the future corrupted poses by conditioning
on past poses

- Training: Forward + reverse diffusion process - the forward process corrupts

the coordinates of the joints via a random displacement map
—+the reverse process unrolls the corruption via estimating this map
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Inference: Generate multi-modal future sequences of poses from random
displacement maps, conditioned on past frames, then aggregates them

statistically to detect anomalies
Reconstructed past

— Reconstructed future

Conditioning: Pass the conditioning of
past frames through an encoder, then
provide them to all latent layers of the
denoising model

- The conditioning embedding adds an 1 T

auxiliary reconstruction loss

MoCoDAD
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Take-away lessons

HR-STC HR-Avenue HR-UBnormal ||UBnormal

Conv-AE CVPR'16 69.8 84.8 - -
Pred CVPR'18 72.7 86.2 - -
MPED-RNN * CVPR'19 75.4 86.3 61.2 60.6
GEPC* CVPR’20 74.8 581 552 53.4
Multi-timescale Prediciton* WACV'20 77.0 88.3 - -
Normal Graph Neurocompuring’21  76.5 87.3 - -
PoseCVAE * ICPR’21 75.7 87.8 - -
BiPOCO * Arxiv'22 75.9 87.0 523 50.7
STGCAE-LSTM * Neurocomputing’22  77.2 86.3 - -
SSMTL++ CVIU'23 - - - 62.1
COSKAD * Arxiv'23 771 87.8 65.5 65.0
MoCoDAD * 77.6 89.0 68.4 68.3

Multiple potential futures improve MoCoDAD predictions by reducing
penalties on hard-still-normal samples, considered as abnormal by

deterministic models

Normal conditioning motions are centered around the true future; abnormal
conditioning makes the ground truth lie on the edge of the predictions’
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- AUC positively correlates with the number of generated future motions for
quantiles Q < 0.5, while the correlation is negative for the mean estimate

and Q>0.5
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