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Multimodal Motion Conditioned Diffusion Model for 
Skeleton-based Video Anomaly Detection
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TL;DR: We propose MoCoDAD that leverages 
probabilistic diffusion models and conditioning 
on past motions to accurately detect anomalies 
by comparing generated motions with expected 
futures. 
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Video Anomaly Detection1

 Skeleton-based Video Anomaly Detection (VAD)

 SoA are constrained to represent a limited latent volume

 Forcing normality into a volume may not work for diverse-but-still-normal 
behaviors

 Anomalies are rare     learn from regular samples only (OCC) or cope with data 
imbalance
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 Latent-based VAD  scoring data points that fall outside the learned latent 
space, which represents normality

[1,2]

 Reconstruction-based VAD  assess how well the model can 
reconstruct normal input, resulting in higher error rates for anomalies

[3,4]

 Skeleton-based VAD  methods exploit compact spatio-temporal 
skeletal representations of human motion instead of raw video frames

[5-8]

How the literature approached VAD2

Proposed Approach3

 MoCoDAD learns to reconstruct the future corrupted poses by conditioning 
on past poses

 Training: Forward + reverse diffusion process     the forward process corrupts 
the coordinates of the joints via a random displacement map      


          the reverse process unrolls the corruption via estimating this map

 Inference: Generate multi-modal future sequences of poses from random 
displacement maps, conditioned on past frames, then aggregates them 
statistically to detect anomalies

 Conditioning: Pass the conditioning of 
past frames through an encoder, then 
provide them to all latent layers of the 
denoising model

 The conditioning embedding adds an 
auxiliary reconstruction loss

Take-away lessons4

 Multiple potential futures improve MoCoDAD predictions by reducing 
penalties on hard-still-normal samples, considered as abnormal by 
deterministic models

 Normal conditioning motions are centered around the true future; abnormal 
conditioning makes the ground truth lie on the edge of the predictions’ 
region

 AUC positively correlates with the number of generated future motions for 
quantiles Q < 0.5, while the correlation is negative for the mean estimate 
and Q > 0.5
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