
Lab - Merge Sort

Algorithms A.Y. 2022/2023

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©

17 February 2023 courtesy of: Andrea Coletta

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Sorting… Again

As you noticed sorting data structures is very important.

Besides, when we sort we have to be efficient!

A new paradigm - Divide and Conquer (and Combine)

A very efficient way to solve complex problems is to divide them into
smaller pieces.

For example, if you have to build a car from scratch you start decomposing
the problem into smaller problems:

A very efficient way to solve complex problems is to divide them into
smaller pieces.

For example, if you have to build a car from scratch you start decomposing
the problem into smaller problems:

1. Assemble the engine
2. Assemble the transmission
3. Assemble the car body
4. etc…

A new paradigm - Divide and Conquer (and Combine)

A very efficient way to solve complex problems is to divide them into
smaller pieces.

In turn each one of these problems can be split into smaller problems:

A new paradigm - Divide and Conquer (and Combine)

A very efficient way to solve complex problems is to divide them into
smaller pieces.

In turn each one of these problems can be split into smaller problems:

1. Assemble the engine
a. make the pistons
b. make the engine block
c. make the camshaft
d. etc…

A new paradigm - Divide and Conquer (and Combine)

A very efficient way to solve complex problems is to divide them into
smaller pieces.

And so on…

A new paradigm - Divide and Conquer (and Combine)

A very efficient way to solve complex problems is to divide them into
smaller pieces.

Once you have all the components you can start assembling them to
actually get the car!

So you start putting the engine parts together.

A new paradigm - Divide and Conquer (and Combine)

A very efficient way to solve complex problems is to divide them into
smaller pieces.

Once you have all the components you can start assembling them to
actually get the car!

So you start putting the engine parts together.

Then you put the engine within the car body.

A new paradigm - Divide and Conquer (and Combine)

A new paradigm - Divide and Conquer (and Combine)

A very efficient way to solve complex problems is to divide them into
smaller pieces.

Once you have all the components you can start assembling them to
actually get the car!

So you start putting the engine parts together.

Then you put the engine within the car body.

Etc…

Until you will have a car!

A new paradigm - Divide and Conquer (and Combine)

This paradigm is used also to solve more “abstract” problems like sorting.

A new paradigm - Divide and Conquer (and Combine)

This paradigm is used also to solve more “abstract” problems like sorting.

Today we explore a sorting algorithm called Merge Sort that is based on this
paradigm!

Merge Sort: the idea

Algorithms based on divide-conquer-combine paradigm decompose large and complex
problems into small and simple sub-parts.

Each sub-part in turn is solved separately, and the solutions are recombined to solve the
original instance.

Steps:

Merge Sort: the idea

Algorithms based on divide-conquer-combine paradigm decompose large and complex
problems into small and simple sub-parts.

Each sub-part in turn is solved separately, and the solutions are recombined to solve the
original instance.

Steps:

1. Divide: decompose a large and complex problem into smaller and simple
subproblems.

Merge Sort: the idea

Algorithms based on divide-conquer-combine paradigm decompose large and complex
problems into small and simple sub-parts.

Each sub-part in turn is solved separately, and the solutions are recombined to solve the
original instance.

Steps:

1. Divide: decompose a large and complex problem into smaller and simple
subproblems.

2. Conquer: use a procedure to solve each one of the smaller subproblems.

Merge Sort: the idea

Algorithms based on divide-conquer-combine paradigm decompose large and complex
problems into small and simple sub-parts.

Each sub-part in turn is solved separately, and the solutions are recombined to solve the
original instance.

Steps:

1. Divide: decompose a large and complex problem into smaller and simple
subproblems.

2. Conquer: use a procedure to solve each one of the smaller subproblems.
3. Combine: join the solutions returned by the procedure to solve the original problem.

Merge Sort: an example

512354277 101

0 1 2 3 4 5Index:

Value:

Merge Sort: an example

512354277 101

0 1 2 3 4 5Index:

Value:

Merge Sort: an example

512354277 101

0 1 2 3 4 5Index:

Value:

512354277 101

0 1 2 0 1 2

Merge Sort: an example

512354277 101

0 1 2 3 4 5Index:

Value:

512354277 101

0 1 2 0 1 2

Merge Sort: an example

354277

0 1 2Index:

Value:

Merge Sort: an example

354277

0 1 2Index:

Value:

Merge Sort: an example

354277

0 1 2Index:

Value:

354277

0 1 0

Merge Sort: an example

354277

0 1 2Index:

Value:

354277

0 1 0

Merge Sort: an example

4277

0 1Index:

Value:

Merge Sort: an example

4277

0 1Index:

Value:

Merge Sort: an example

4277

0 1Index:

Value:

4277

0 0

Merge Sort: an example

4277

0 1Index:

Value:

4277

0 0

Here we reached the simplest
possible case!
We cannot divide the list again!

Merge Sort: an example

4277

0 0

Now we have to join the results!

Merge Sort: an example

4277

0 0

Now we have to join the results!

How?

Merge Sort: an example

4277

0 0

Now we have to join the results!

How?
We can check which element is
the smaller one between the two
and put it into the position 0
while the other one into position
1

Merge Sort: an example

4277

0 0

Since this case is trivial we are
going to see the procedure used
to merge during the next join
step!

Merge Sort: an example

4277

0 0

7742

0 1Index:

Value:

Merge Sort: an example

357742

0 1 0

Again we have to join the results!

Merge Sort: an example

357742

0 1 0

Again we have to join the results!

But how can we do that in linear
time?

Merge Sort: the merge procedure
Before continuing with the Merge Sort execution we see a brief
explanation about the merge procedure.

Merge Sort: the merge procedure
Before continuing with the Merge Sort execution we see a brief
explanation about the merge procedure.

This procedure joins two ordered lists into a single ordered list!

Merge Sort: the merge procedure
Let’s declare an empty vector result that can contain the elements of
both the sub-vectors!

1015774235 12

0 1 2 0 1 2

i j
0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Both left and right are ordered. We also use i, j, k as bookmarks

1015774235 12

0 1 2 0 1 2

i j
0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
First of all we compare left[0] and right[0] to find the smallest value.

1015774235 12

0 1 2 0 1 2

i j
0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Once we find it we place it in the result list at position 0

1015774235 12

0 1 2 0 1 2

i j
0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Once we find it we place it in the result list at position 0

1015774235 12

0 1 2 0 1 2

i j

5

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Then we increase the indices j and k

1015774235 12

0 1 2 0 1 2

i j

5

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Again, we have to compare left[0] and right[1] to find the smallest value.

1015774235 12

0 1 2 0 1 2

i j

5

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Once we find it we place it in the result list at position 1

1015774235 12

0 1 2 0 1 2

i j

125

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Then again we increase the indices j and k

1015774235 12

0 1 2 0 1 2

i j

125

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Now we have to compare left[0] and right[2] to find the smallest value.

1015774235 12

0 1 2 0 1 2

i j

125

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Once we find it we place it in the result list at position 2

1015774235 12

0 1 2 0 1 2

i j

35125

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
This time we increase the indices i and k

1015774235 12

0 1 2 0 1 2

i j

35125

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Now we have to compare left[1] and right[2] to find the smallest value.

1015774235 12

0 1 2 0 1 2

i j

35125

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Once we find it we place it in the result list at position 3

1015774235 12

0 1 2 0 1 2

i j

4235125

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Again we increase the indices i and k

1015774235 12

0 1 2 0 1 2

i j

4235125

0 1 2 3 4 5

k

result =

left = right =

Merge Sort: the merge procedure
Since we have just two elements now we can look for the smaller one
and put it into position 4 and the larger one into position 5

1015774235 12

0 1 2 0 1 2

i j

4235125 77

0 1 2 3 4 5

result =

left = right =

Merge Sort: the merge procedure
Since we have just two elements now we can look for the smaller one
and put it into position 4 and the larger one into position 5

1015774235 12

0 1 2 0 1 2

i j

1014235125 77

0 1 2 3 4 5

result =

left = right =

Merge Sort: the merge procedure
The computational complexity of this procedure is 𝛳(n)

It works because each time we select the minimum among the smallest
values!

Merge Sort: an example

357742

0 1 0

774235

0 1 2Index:

Value:

Merge Sort: an example

And so on!

Merge Sort: an example
Visualization of the tree for a particular instance

Merge Sort: pseudocode

Merge procedure: Pseudocode

Computational Complexity?

Merge procedure: Pseudocode

𝑶 𝒏 𝒍𝒐𝒈𝒏

Computational Complexity?

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

We need:
• the lenght of the sub list

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

We need:
• the lenght of the sub list
• A left index pointing out the starting point of the FIRST list

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

We need:
• the lenght of the sub list
• A left index pointing out the starting point of the FIRST list
• A mid index pointing out the ending point of the FIRST list and the

starting point of the SECOND one

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

We need:
• the lenght of the sub list
• A left index pointing out the starting point of the FIRST list
• A mid index pointing out the ending point of the FIRST list and the

starting point of the SECOND one
• A right index pointing out the ending point of the SECOND list

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

The iterative procedure starts from the smallest possible instance
using a bottom-up approach

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

The iterative procedure starts from the smallest possible instance
using a bottom-up approach
The difference with the recursive solution is that we don’t need to go top-
down and then bottom-up

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

width = 1

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

left = ?
width = 1

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

left = 0
width = 1

mid = ?
left

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

left = 0
width = 1

mid = 0
left
mid

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

left = 0
width = 1

left
midmid = 0

right = ?

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

left = 0
width = 1

left
midmid = 0

right = 1

right

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

left right Now? Merge!
left = 0

width = 1

mid = 0
right = 1

mid

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

left right
4277

0 0

left list right list
left = 0

width = 1

mid = 0
right = 1

mid

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

left right
4277

0 0

left list right list

Is 77 < 42?

left = 0
width = 1

mid = 0
right = 1

mid

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

left right
4277

0 0

left list right list

Clearly not!

left = 0
width = 1

mid = 0
right = 1

mid

Merge Sort: An iterative solution

512354277 101

0 1 2 3 4 5Index:

Value:

left right
4277

0 0

left list right list

Put in the original list 42 at
index 0 and 77 at index 1

left = 0
width = 1

mid = 0
right = 1

mid

Merge Sort: An iterative solution

512357742 101

0 1 2 3 4 5Index:

Value:

left right
4277

0 0

left list right list
left = 0

width = 1

mid = 0
right = 1 Put in the original list 42 at

index 0 and 77 at index 1

mid

Merge Sort: An iterative solution

512357742 101

0 1 2 3 4 5Index:

Value:

left rightleft = ?
width = 1

mid = ?
right = ?

mid

Merge Sort: An iterative solution

512357742 101

0 1 2 3 4 5Index:

Value:

leftright

width = 1

mid = ?
right = ?

midleft = left + width*2

Merge Sort: An iterative solution

512357742 101

0 1 2 3 4 5Index:

Value:

leftright

width = 1

mid = left + width - 1
right = ?

mid
left = left + width*2

Merge Sort: An iterative solution

512357742 101

0 1 2 3 4 5Index:

Value:

left rightleft = left + width*2
width = 1

mid = left + width - 1
right = left + (width*2 -1)

mid

Merge Sort: An iterative solution

512357742 101

0 1 2 3 4 5Index:

Value:

left rightleft = 2
width = 1

mid = 2
right = 3 mid

Merge Sort: An iterative solution

512357742 101

0 1 2 3 4 5Index:

Value:

left rightleft = 2
width = 1

mid = 2
right = 3 mid

Merge Again!

Merge Sort: An iterative solution

535127742 101

0 1 2 3 4 5Index:

Value:

left rightleft = 2
width = 1

mid = 2
right = 3 mid

Merge Again!

Merge Sort: An iterative solution

535127742 101

0 1 2 3 4 5Index:

Value:

rightleft = 4
width = 1

mid = 4
right = 5

left
mid

Merge Sort: An iterative solution

10135127742 5

0 1 2 3 4 5Index:

Value:

left rightleft = 4
width = 1

mid = 4
right = 5 mid

Merge Again!

Merge Sort: An iterative solution

10135127742 5

0 1 2 3 4 5Index:

Value:

We just solved the problem for sub list of length 1 (width)
77 42 35 12 101 5

42 77 12 35 5 101

Merge Sort: An iterative solution

10135127742 5

0 1 2 3 4 5Index:

Value:

Now we have to solve the problem for width = 2

Merge Sort: An iterative solution

10135127742 5

0 1 2 3 4 5Index:

Value:

Let’s start computing width, left, mid and right

Merge Sort: An iterative solution

10135127742 5

0 1 2 3 4 5Index:

Value:

left rightleft = 0
width = 2

mid = 1
right = 3

mid

Merge Sort: An iterative solution

10177423512 5

0 1 2 3 4 5Index:

Value:

left rightleft = 0
width = 2

mid = 1
right = 3

mid

Merge!

Merge Sort: An iterative solution

10177423512 5

0 1 2 3 4 5Index:

Value:

leftleft = 4
width = 2

mid = 5
right = 7

mid

Merge Sort: An iterative solution

10177423512 5

0 1 2 3 4 5Index:

Value:

leftleft = 4
width = 2

mid = 5
right = 7

mid

right is out of bound!

Merge Sort: An iterative solution

10177423512 5

0 1 2 3 4 5Index:

Value:

leftleft = 4
width = 2

mid = 5
right = 5

mid

We set is as the list
lenght in this case 5

right

Merge Sort: An iterative solution

10177423512 5

0 1 2 3 4 5Index:

Value:

leftleft = 4
width = 2

mid = 5
right = 5

mid

In general every time an index goes out of
bound we set it as the lenght of the list!

right

Merge Sort: An iterative solution

10177423512 5

0 1 2 3 4 5Index:

Value:

leftleft = 4
width = 2

mid = 5
right = 5

mid

Now we merge again the sub lists

right

Merge Sort: An iterative solution

10177423512 5

0 1 2 3 4 5Index:

Value:

leftleft = 0
width = 4

mid = 3
right = 5

mid

And perform the iteration 3

right

Merge Sort: An iterative solution

1014235125 77

0 1 2 3 4 5Index:

Value:

leftleft = 0
width = 4

mid = 3
right = 5

mid

Now we merge

right

Merge Sort: An iterative solution

1014235125 77

0 1 2 3 4 5Index:

Value:

And we are done! Why?
Because at the next iteration left becomes bigger
than the list length so we exit the inner loop.
Than we double width but it is bigger than the list
length too so the algorithm ends!

Merge Sort: An iterative solution
Procedure iterative_mergesort(A: list):

width = 1
list_length = len(A)

while (width < list_length):
left = 0

while (left < list_length):
right = min(left + (width * 2 - 1), list_length - 1)
middle = min(left + width - 1, list_length - 1)
merge(A, left, middle, right)
left += width*2

width *= 2
return A

Python Sort!

What is the algorithm behind python’s sorted?

Python Sort – TimSort (hybrid)
Official website: https://docs.python.org/3/library/functions.html

Idea:

- It takes an unsorted list and divides the elements in “runs”
- A small “run” is sorted by using the insertion sort algorithm.
- Eventually, it merges the sorted ”runs” (Merge sort).

https://docs.python.org/3/library/functions.html

Python Sort – TimSort (hybrid)
Official website: https://docs.python.org/3/library/functions.html

Idea: Based on Insertion Sort + Merge Sort.

Why we use the Insertion Sort if the Merge sort is asynthotically
more efficient?

https://docs.python.org/3/library/functions.html

Python Sort – TimSort (hybrid)
Official website: https://docs.python.org/3/library/functions.html

Idea: Based on Insertion Sort + Merge Sort.

Why we use the Insertion Sort if the Merge sort is asynthotically
more efficient?

Asymptotically faster means that there is a threshold N such that
if n≥N then sorting n elements with merge sort is faster than with
insertion sort

https://docs.python.org/3/library/functions.html

Python Sort – TimSort (hybrid)
Official website: https://docs.python.org/3/library/functions.html

Idea: Based on Insertion Sort + Merge Sort.

Why we use the Insertion Sort if the Merge sort is asynthotically
more efficient?

Computational Complexity O(n log n)
Space Complexity O(n)

https://docs.python.org/3/library/functions.html

Python Sort - Comparison
Num Items Mergesort TimSort

16,000 0.002 0.003

32,000 0.003 0.002

64,000 0.008 0.004

128,000 0.015 0.009

256,000 0.034 0.018

512,000 0.068 0.040
1,024,000 0.143 0.082
2,048,000 0.296 0.184
4,096,000 0.659 0.383
8,192,000 1.372 0.786

https://www.cs.utexas.edu/~scottm/cs314/handouts/slides/Topic17FastSorting.pptx

