Luiss
Libera Universita Internazionale degli Studi Sociali Guido Carli

Algorithms A.Y. 2022/2023

Lab — Fibonacci and Ternary Search complexity

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@Iuiss.it©

24 February 2023 courtesy of: Andrea Coletta

<

LU I S S GW Dipartimento di Impresa e Management IIII”



mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Fibonacci — A first recursive approach

algorithm fibonacci2(integer n) — integer
1. if (n < 2) then return 1
2 else return fibonacci2(n — 1) + fibonacci2(n — 2)

Figure 1.4 Algorithm fibonacci?2 to compute the n-th Fibonacci number.

Question: How many recursive call the algorithm
does approximately?

LUISS r



Fibonacci — A first recursive approach

algorithm fibonacci2(integer n) — integer
1. if (n < 2) then return 1
2 else return fibonacci2(n — 1) + fibonacci2(n — 2)

Figure 1.4 Algorithm fibonacci?2 to compute the n-th Fibonacci number.

Question: How many recursive call the algorithm
does approximately?
Answer: O(2")

LUISS r



Fibonacci — A first recursive approach

algorithm fibonacci2(integer n) — integer
1. if (n < 2) then return 1
2 else return fibonacci2(n — 1) + fibonacci2(n — 2)

Figure 1.4 Algorithm fibonacci?2 to compute the n-th Fibonacci number.

Question: How many recursive call the algorithm
does approximately?

Answer: O(2")

Question: Can we prove it?

LUISS r



Fibonacci — A first recursive approach

algorithm fibonacci2(integer n) — integer
1. if (n < 2) then return 1
2 else return fibonacci2(n — 1) + fibonacci2(n — 2)

Figure 1.4 Algorithm fibonacci?2 to compute the n-th Fibonacci number.

Question: How many recursive call the algorithm

does approximately?
Answer: O(2")

Question: Can we prove it?
Answer: YES!

LUISS r



Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")

LUISS r



Big O Notation: A Brief Recap

What is the Big O notation?
Big O notation is a mathematical notation that describes the behavior of
a function when the argument tends to infinity

LUISS r



Big O Notation: A Brief Recap

What is the Big O notation?

Big O notation is a mathematical notation that describes the behavior of
a function when the argument tends to infinity

Why do we need that?

We use it to classify algorithms according to how their run time or space
requirements

LUISS r



Big O Notation: A Brief Recap

Formal Definition:

let fand g be two functions.

We can say that f{x) = O(g(x)) when x — « if given two real
numbers M and x, the following relation holds:

[f(x)| <M g(x) for all x > x,

LUISS r



Big O Notation: A Brief Recap

Formal Definition:

let fand g be two functions.

We can say that f{x) = O(g(x)) when x — « if given two real

numbers M and X, the following relation holds: M g(x)

[f(x)| <M g(x) for all x > x,

Jx)

LUISS r



Big O Notation: Rules

To analyze algorithms we want to explore cases with very large input
values.

In this setting, the contribution of the terms that grow "most quickly" will
eventually make the other ones irrelevant.

So we can apply the following rules:

e If f{x)is a sum of several terms we can keep just the one with largest
growth rate

e If f{x)is a product of several factors, any constants that do not
depend on x (the input) can be omitted

LUISS r 1



LUISS

Big O Notation: Example

Given fix) =6x*+2x’ +5

Applying the rules we get: fix) = O(x*).

i

12



Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

Before we start we are going to use a bit of syntactic sugar:

- we define T(n) = Fibonacci2(n) as the number of operations
needed to compute the n-th Fibonacci number

- we define ¢ as a constant value for each operation that can be

executed in a constant amount of time (for example sum two
numbers)

LUISS

13



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

Let’s start

i

14



Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

First of all we can say that the time needed to compute
Fibonacci2(n) is equal to:

Fibonacci2(n) = Fibonacci2(n-1) + Fibonacci2(n-2) + c
Thus using our notation, just to be concise, it will become:

I(n) =T(n-1) + T(n-2) +c

LUISS

15



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(m) =1T1(n-1)+ T(n-2)+c
Now we can assume that the time needed to compute 7(n-1) is
approximately equal to the time to compute 7(n-2).

Mathematically we can write this approximation as 7T(n-1) > T(n-2)

Is it ok to do that? Yes, but we know that the result won’t be
exactly the right one

i

16



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(m) =1T1(n-1)+ T(n-2)+c
2) T(n-1) 2T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + ¢ (Equation 1)
substituting 7(n-2) with T(n-1).

But now the equivalence does not hold anymore so we have to
change = with < getting as result 7(n) <T(n-1) + T(n-1) + c.

That we can rewrite as T(n) <2T(n-1) + c
TF

17



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(m) =T1T(n-1) +Tn-2) +c
2) T(n-1) 2T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + ¢ (Equation 1)
as I'(n) £21(n-1) +c

Why?

i

18



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(m) =T1T(n-1) +Tn-2) +c
2) T(n-1) 2T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + ¢ (Equation 1)
as I'(n) £21(n-1) +c

Why?

Intuitively T(n-1) > T(n-2).

To understand this you can make an example.
It requires more time to compute 7(5) than 7(4)

i

19



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(m) =T1T(n-1) +Tn-2) +c
2) T(n-1) 2T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + ¢ (Equation 1)
as I'(n) £21(n-1) +c

Why?

If you follow the line of reasoning what we are saying is that:
1(6) =T(5) + T(4) +c=T(5) + T(5) +c

i

20



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(m) =T1T(n-1) +Tn-2) +c
2) T(n-1) 2T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + ¢ (Equation 1)
as I'(n) £21(n-1) +c

Why do we need this approximation?
Simple: to make things easier!

i

21



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(m) =1T1(n-1)+ T(n-2)+c
2) T(n-1) 2T(n-2)
3) T(n) <T(n-1) + T(n-1) +c orT(n) <21(n-1) +c

Now, we need to get the time needed to compute T(n-1)

How can we do that? Easy! we can say that:

T(n-1) =T(n-2) + T(n-3) +c

But using the same line of reasoning used before

(but now with T(n-2) > T(n-3)) we get: T(n-1) < T(n-2) + T(n-2) +c

i

22



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(m) =T1T(n-1) +Tn-2) +c
2) T(n-1) 2T(n-2)
3) T(m) <T(n-1) +T(n-1) +c orT(n) <2T(n-1) +c

So T(n-1) < T(n-2) + T(n-2) + ¢ can be written as T(n-1) <2T(n-2) + ¢

i

23



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(m) =1T1(n-1)+ T(n-2)+c

2) T(n-1) 2T(n-2)

3) T(n) <T(n-1) + T(n-1) +c orT(n) <21(n-1) +c
4) T(n-1) <2T(n-2) +c

You can easily see that we can substitute in equation 3 the equation 4.
Even if we make the substitution the inequality will hold in any case.

So we can write equation 3 as T(n) <2 * (2T(n-2) + ¢) + ¢

i

24



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(m) =T1T(n-1) +Tn-2) +c

2) T(n-1) 2T(n-2)

3) T(m) <T(n-1) +T(n-1) +c orT(n) <2T(n-1) +c
4) T(n-1) <2T(n-2) +c

By simply performing the multiplication we get:
I(n) <2 *(21(n-2) +c) +c=4T(n-2) + 3c

Thus: T(n) <4T(n-2) + 3c
TF

25



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(n) =T(n-1)+ T(n-2) +c

2) T(n-1) 2T(n-2)

3) T(n) <T(n-1)+ T(n-1) +c or T(n) <2T(n-1) +c
4) T(n-1) <2T(n-2) +c

5) T(n) <4T(n-2) + 3c

As you can see the idea is to define T(n) as the time to compute
the sub problems!

i

26



LUISS

Fibonacci — A first recursive approach

Graphically it means:

F(n)

F(n-I) /\ F(n-2)

T(n) =T(n-1) +T(n-2) +c

SN TN

F(n-2) F(n-3) F(n-3)

i

27



LUISS

Fibonacci — A first recursive approach

Graphically it means: T(n) = T(n-1) + T(n-2) + ¢

F(6) For example if n=6

) /\ ) T(6) = T(5) + T(4) + ¢

i

28



Fibonacci — A first recursive approach
Graphically it means: T(n) =T(n-1) + T(n-2) + c < T(n-1) + T(n-1) +c

o F(6)

F(5) /\ F4) F(5) /\ F(5)

IN

LUISS r 20



Fibonacci — A first recursive approach

Graphically it means: | T(n) = T(n-1) + T(n-2) + ¢|< T(n-1) + T(n-1) + ¢

F(6) / )

F(5) /\ F(4) < F(5) /\ F(5)

LUISS r



Fibonacci — A first recursive approach
Graphically it means:  T(n) = T(n-1) + T(n-2) + d<|T(n-1) + T(n-1) + ¢

i F(©)

AN S AN

F@ e  FG) F@ F F4)  Fd) F4)

LUISS r 3



Fibonacci — A first recursive approach

Graphically it means:  T(n) = T(n-1) + T(n-2) + ¢ <[I(n-1) + T(n-1) + ¢|

F(6) F(6)

AN S AN

F@ e  FG) F@ F F4)  Fd) F4)

N KN N /\/><\/\

LUISS r 32



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(n) =T(n-1)+ T(n-2) +c

2) T(n-1) 2T(n-2)

3) T(n) <T(n-1)+ T(n-1) +c or T(n) <2T(n-1) +c
4) T(n-1) <2T(n-2) +c

5) T(n) <4T(n-2) + 3c

We can still follow the same line of reasoning and decompose
T(n-2) into sub problems

i

33



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(n) =T(n-1)+ T(n-2) +c

2) T(n-1) 2T(n-2)

3) T(n) <T(n-1)+ T(n-1) +c or T(n) <2T(n-1) +c
4) T(n-1) <2T(n-2) +c

5) T(n) <4T(n-2) + 3c

I'(n-2) =Tm-3) + IT(n-4) + c<1(n-3) + T(n-3) + ¢ =21(n-3) +c

i

34



Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(n) =T(n-1)+ T(n-2) +c

2) T(n-1) 2T(n-2)

3) T(n) <T(n-1)+ T(n-1) +c or T(n) <2T(n-1) +c
4) T(n-1) <2T(n-2) +c

5) T(n) <4T(n-2) + 3c

I(n-2) =1T(n-3) + T(n-4) + ¢c < T(n-3) + T(n-3) + c =21(n-3) +c
If we substitute this definition of T(n-2) in equation 5 we get:

T(n) <4(2T(n-3) +c) + 3¢ =8T(n-3) + 7c
LUISS “F

35



LUISS

Theorem: the computational complexity for Fibonacci2 is O(2")

Fibonacci — A first recursive approach

Proof:

1)
2)
3)
4)
3)
0)

T(n) =T(n-1) + T(n-2) +c

T(n-1) =2 T(n-2)

T(n) <T(n-1) + T(n-1) +c or T(n) <2T(n-1) +c
I(n-1) <2T(n-2) +c

T(n) <4T(n-2) + 3c

T(n) <8T(n-3) +7c

7) ...

As you can see it seem there is a patter...

i

36



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

1) T(n)<2T(n-1) +c
2) T(n) <4T(n-2) + 3c
3) T(n) <8T(n-3)+ 7c

We can generalize it with:

T(n) <2*T(n-k) + (2*-1)c

i

37



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

T(n) < 2* T(n-k) + (2*-1)c

Now, which is the value of k such that n-k = 07?
Remember: the k here is the value representing the tree depth!

i

38



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

T(n) < 2* T(n-k) + (2*-1)c
Using the following equality: n-k=0

Follows that k =n

i

39



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

T(n) <2*T(n-k) + (2*-1)c

We can substitute &k with » and put n-k = 0 and we get
T(n) <2" T@O) + (2" - 1) ¢

We can say that 7(0) executes in constant time so, we get: ...

i

40



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")
Proof:

T(n) <2" T(0) + (2" - 1) ¢

i

41



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")

Proof:
T(n) < Z”M + (2" - IX
S

O(l)

i

42



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")

Proof:
T(n) < zn)Q + (%X

i

43



LUISS

Fibonacci — A first recursive approach

Theorem: the computational complexity for Fibonacci2 is O(2")

Proof:
T(n) < zn)Q + (XX

I(n) = 0(2%)

i

44



LUISS

Fibonacci — A first recursive approach
Theorem: the computational complexity for Fibonacci2 is O(2")

Proof:
I(n) = O(2")

There are other approximations that are more precise.

Fun fact:

It is possible to prove that the computational complexity of this
algorithm is ¢”

i

45



LUISS

Ternary Search

def ternarySearch(l, r, key, ar):
if (r >= 1) :
midl =1 + (r - 1) //3
mid2 = r - (r - 1) //3

if (ar[midl] == key):
return midl
if (ar[mid2] == key):

return mid2
if (key < ar[midl]):

return ternarySearch(l, midl - 1, key, ar)
elif (key > ar[mid2]):

return ternarySearch(mid2 + 1, r, key, ar)
else:

return ternarySearch(midl + 1, mid2 - 1, key, ar)
return -1

i

46



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

Again we define the relation that describes how many operation are
needed to compute the search.

We define T(n) = Ternary(n) as the number of operations needed to
search a number in a list of length »

i

47



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

We can say that T(n) = T(3i) +c

Where n is the length of the list and c is a constant that represents the
comparison operations.

i

48



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

1) T(n) = T(%) + ¢
Now we have to define T(%)
3

Ideas?

i

49



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

1) T(n) = T(3l) +c

We can do that by dividing again »n by 3 so:

No)=TE%) +c
3 3

i

50



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

1) T)=T(L) +c
3
1) T(2) = Tes) +e

substituting equation 2 in equation 1 we get T(n) = T(%) +2¢

i

51



LUISS

Ternary Search
Theorem: the computational complexity for Ternary is @(log.n)

Proof:

1) Tm) =TCY) +c
3

1) T(Z) = TE;) +c

) T(n)ZT(%)Jch

again we have to find the definition of T(— )
32

i

52



LUISS

Ternary Search
Theorem: the computational complexity for Ternary is @(log.n)

Proof:
) Tm)=T) +c
3
1) T(5) = Teg) +e
1) T(n)ZT(%)Jch

again we have to find the definition of T(%) = T(%) +c

i

53



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

D) Tm)=TM) +c
3

1) T(5) = T) +c

1) T(n)ZT(%)Jch

We can use the definition to define T(n)

i

54



LUISS

Ternary Search
Theorem: the computational complexity for Ternary is @(log.n)

Proof:
) Tm)=T) +c
3
1) T(5) = Teg) +e
1) T(n)ZT(%)Jch

We can use the definition to define T(n) = T( %) + 3¢

i

95



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

1) Tm)=TC-) +c You can start recognizing a
" 3 " pattern...
1) T(— = T—) +c¢
) T(5) = 1)
n
1) T(I/l):T(?)—l—ZC

1) T(n)ZT(%)JrS’c

i

56



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

1) T(n) =T ) +c You can start recognizing a
3 pattern...
1) T(=)=T) +c
. n3 T(n) =T(—) +kc
1) T(n)zT(?)Jch 3

1) T(n)ZT(%)JrS’c

i

o7



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

Now we want to know for which £ we have 7(1) (the base case)

T(n)ZT(%)Jrkc

i

58



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

Now we want to know for which £ we have 7(1) (the base case)
no_

So we put o 1

Thus n = 3*

And so applying log, to both sides we get k = log.n

i

59



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

Now we want to know for which £ we have 7(1) (the base case)

We use k = log,n and put it into the recurrence relation for n=1

T(n) =1(1) + log;n c

i

60



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

Now we want to know for which £ we have 7(1) (the base case)

We use k = log,n and put it into the recurrence relation for n=1

T(n) =1(1) + log;n c

Applying the asymptotic notation we get...

i

61



LUISS

Ternary Search

Theorem: the computational complexity for Ternary is @(log.n)
Proof:

Now we want to know for which £ we have 7(1) (the base case)

We use k = log,n and put it into the recurrence relation for n=1

T(n) =1(1) + log;n c

T(n) = O(log.n)

i

62



