
Lab – Fibonacci and Ternary Search complexity
Algorithms A.Y. 2022/2023

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©

24 February 2023 courtesy of: Andrea Coletta

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Fibonacci – A first recursive approach

2

Question: How many recursive call the algorithm
does approximately?

Fibonacci – A first recursive approach

3

Question: How many recursive call the algorithm
does approximately?
Answer: O(2n)

Fibonacci – A first recursive approach

4

Question: How many recursive call the algorithm
does approximately?
Answer: O(2n)
Question: Can we prove it?

Fibonacci – A first recursive approach

5

Question: How many recursive call the algorithm
does approximately?
Answer: O(2n)
Question: Can we prove it?
Answer: YES!

Fibonacci – A first recursive approach

6

Theorem: the computational complexity for Fibonacci2 is O(2n)

Big O Notation: A Brief Recap

7

What is the Big O notation?
Big O notation is a mathematical notation that describes the behavior of
a function when the argument tends to infinity

Big O Notation: A Brief Recap

8

What is the Big O notation?
Big O notation is a mathematical notation that describes the behavior of
a function when the argument tends to infinity
Why do we need that?
We use it to classify algorithms according to how their run time or space
requirements

Big O Notation: A Brief Recap

9

Formal Definition:
let f and g be two functions.
We can say that f(x) = O(g(x)) when x → ∞ if given two real
numbers M and x0 the following relation holds:

|f(x)| ≤ M g(x) for all x > x0

Big O Notation: A Brief Recap

10

Formal Definition:
let f and g be two functions.
We can say that f(x) = O(g(x)) when x → ∞ if given two real
numbers M and x0 the following relation holds:

|f(x)| ≤ M g(x) for all x > x0

f(x)

M g(x)

x0

Big O Notation: Rules

11

To analyze algorithms we want to explore cases with very large input
values.
In this setting, the contribution of the terms that grow "most quickly" will
eventually make the other ones irrelevant.
So we can apply the following rules:
● If f(x) is a sum of several terms we can keep just the one with largest

growth rate
● If f(x) is a product of several factors, any constants that do not

depend on x (the input) can be omitted

Big O Notation: Example

12

Given f(x) = 6x4 + 2x3 + 5

Applying the rules we get: f(x) = O(x4).

Fibonacci – A first recursive approach

13

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

Before we start we are going to use a bit of syntactic sugar:

- we define T(n) = Fibonacci2(n) as the number of operations
needed to compute the n-th Fibonacci number

- we define c as a constant value for each operation that can be
executed in a constant amount of time (for example sum two
numbers)

Fibonacci – A first recursive approach

14

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

Let’s start

Fibonacci – A first recursive approach

15

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

First of all we can say that the time needed to compute
Fibonacci2(n) is equal to:

Fibonacci2(n) = Fibonacci2(n-1) + Fibonacci2(n-2) + c

Thus using our notation, just to be concise, it will become:

T(n) = T(n-1) + T(n-2) + c

Fibonacci – A first recursive approach

16

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c

Now we can assume that the time needed to compute T(n-1) is
approximately equal to the time to compute T(n-2).
Mathematically we can write this approximation as T(n-1) ≥ T(n-2)

Is it ok to do that? Yes, but we know that the result won’t be
exactly the right one

Fibonacci – A first recursive approach

17

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1)
substituting T(n-2) with T(n-1).

But now the equivalence does not hold anymore so we have to
change = with ≤ getting as result T(n) ≤ T(n-1) + T(n-1) + c.

That we can rewrite as T(n) ≤ 2T(n-1) + c

Fibonacci – A first recursive approach

18

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1)
as T(n) ≤ 2T(n-1) + c

Why?

Fibonacci – A first recursive approach

19

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1)
as T(n) ≤ 2T(n-1) + c

Why?
Intuitively T(n-1) > T(n-2).
To understand this you can make an example.
It requires more time to compute T(5) than T(4)

Fibonacci – A first recursive approach

20

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1)
as T(n) ≤ 2T(n-1) + c

Why?
If you follow the line of reasoning what we are saying is that:
T(6) = T(5) + T(4) + c ≤ T(5) + T(5) + c

Fibonacci – A first recursive approach

21

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1)
as T(n) ≤ 2T(n-1) + c

Why do we need this approximation?
Simple: to make things easier!

Fibonacci – A first recursive approach

22

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c or T(n) ≤ 2T(n-1) + c

Now, we need to get the time needed to compute T(n-1)
How can we do that? Easy! we can say that:
T(n-1) = T(n-2) + T(n-3) + c
But using the same line of reasoning used before
(but now with T(n-2) ≥ T(n-3)) we get: T(n-1) ≤ T(n-2) + T(n-2) + c

Fibonacci – A first recursive approach

23

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c or T(n) ≤ 2T(n-1) + c

So T(n-1) ≤ T(n-2) + T(n-2) + c can be written as T(n-1) ≤ 2T(n-2) + c

Fibonacci – A first recursive approach

24

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c

You can easily see that we can substitute in equation 3 the equation 4.
Even if we make the substitution the inequality will hold in any case.
So we can write equation 3 as T(n) ≤ 2 * (2T(n-2) + c) + c

Fibonacci – A first recursive approach

25

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c

By simply performing the multiplication we get:

T(n) ≤ 2 * (2T(n-2) + c) + c = 4T(n-2) + 3c

Thus: T(n) ≤ 4T(n-2) + 3c

Fibonacci – A first recursive approach

26

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c
5) T(n) ≤ 4T(n-2) + 3c

As you can see the idea is to define T(n) as the time to compute
the sub problems!

Fibonacci – A first recursive approach

27

Graphically it means:

F(n)

F(n-2)F(n-1)

F(n-3) F(n-4)F(n-2) F(n-3)

T(n) = T(n-1) + T(n-2) + c

… …… …… … ……

Fibonacci – A first recursive approach

28

Graphically it means:

F(6)

F(4)F(5)

F(3) F(2)F(4) F(3)

T(n) = T(n-1) + T(n-2) + c

For example if n=6

T(6) = T(5) + T(4) + c

… …… …… … ……

Fibonacci – A first recursive approach

29

Graphically it means:

F(6)

F(4)F(5)

F(3) F(2)F(4) F(3)

T(n) = T(n-1) + T(n-2) + c ≤ T(n-1) + T(n-1) + c

… …… …… … ……

F(6)

F(5)F(5)

F(4) F(4)F(4) F(4)

… …… …… … ……

≤

Fibonacci – A first recursive approach

Graphically it means:

F(6)

F(4)F(5)

F(3) F(2)F(4) F(3)

T(n) = T(n-1) + T(n-2) + c ≤ T(n-1) + T(n-1) + c

… …… …… … ……

F(6)

F(5)F(5)

F(4) F(4)F(4) F(4)

… …… …… … ……

≤

Fibonacci – A first recursive approach

31

Graphically it means:

F(6)

F(4)F(5)

F(3) F(2)F(4) F(3)

T(n) = T(n-1) + T(n-2) + c ≤ T(n-1) + T(n-1) + c

… …… …… … ……

F(6)

F(5)F(5)

F(4) F(4)F(4) F(4)

… …… …… … ……

≤

Fibonacci – A first recursive approach

32

Graphically it means:

F(6)

F(4)F(5)

F(3) F(2)F(4) F(3)

T(n) = T(n-1) + T(n-2) + c ≤ T(n-1) + T(n-1) + c

… …… …… … ……

F(6)

F(5)F(5)

F(4) F(4)F(4) F(4)

… …… …… … ……

≤

Fibonacci – A first recursive approach

33

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c
5) T(n) ≤ 4T(n-2) + 3c

We can still follow the same line of reasoning and decompose
T(n-2) into sub problems

Fibonacci – A first recursive approach

34

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c
5) T(n) ≤ 4T(n-2) + 3c

T(n-2) = T(n-3) + T(n-4) + c ≤ T(n-3) + T(n-3) + c = 2T(n-3) + c

Fibonacci – A first recursive approach

35

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c
5) T(n) ≤ 4T(n-2) + 3c

T(n-2) = T(n-3) + T(n-4) + c ≤ T(n-3) + T(n-3) + c = 2T(n-3) + c
If we substitute this definition of T(n-2) in equation 5 we get:

T(n) ≤ 4(2T(n-3) +c) + 3c = 8T(n-3) + 7c

Fibonacci – A first recursive approach

36

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c
5) T(n) ≤ 4T(n-2) + 3c
6) T(n) ≤ 8T(n-3) + 7c
7) …

As you can see it seem there is a patter…

Fibonacci – A first recursive approach

37

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) ≤ 2T(n-1) + c
2) T(n) ≤ 4T(n-2) + 3c
3) T(n) ≤ 8T(n-3) + 7c
…

We can generalize it with:

T(n) ≤ 2k T(n-k) + (2k-1)c

Fibonacci – A first recursive approach

38

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2k T(n-k) + (2k-1)c

Now, which is the value of k such that n-k = 0?
Remember: the k here is the value representing the tree depth!

Fibonacci – A first recursive approach

39

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2k T(n-k) + (2k-1)c

Using the following equality: n-k=0

Follows that k = n

Fibonacci – A first recursive approach

40

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2k T(n-k) + (2k-1)c

We can substitute k with n and put n-k = 0 and we get

T(n) ≤ 2n T(0) + (2n - 1) c

We can say that T(0) executes in constant time so, we get: ...

Fibonacci – A first recursive approach

41

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2n T(0) + (2n - 1) c

Fibonacci – A first recursive approach

42

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2n T(0) + (2n - 1) c

O(1)

Fibonacci – A first recursive approach

43

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2n T(0) + (2n - 1) c

Fibonacci – A first recursive approach

44

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2n T(0) + (2n - 1) c

T(n) = O(2n)

Fibonacci – A first recursive approach

45

Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) = O(2n)

There are other approximations that are more precise.

Fun fact:
It is possible to prove that the computational complexity of this
algorithm is φn

Ternary Search

46

def ternarySearch(l, r, key, ar):
 if (r >= l):
 mid1 = l + (r - l) //3
 mid2 = r - (r - l) //3
 if (ar[mid1] == key):
 return mid1
 if (ar[mid2] == key):
 return mid2
 if (key < ar[mid1]):
 return ternarySearch(l, mid1 - 1, key, ar)
 elif (key > ar[mid2]):
 return ternarySearch(mid2 + 1, r, key, ar)
 else:
 return ternarySearch(mid1 + 1, mid2 - 1, key, ar)
 return -1

Ternary Search

47

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Again we define the relation that describes how many operation are
needed to compute the search.

We define T(n) = Ternary(n) as the number of operations needed to
search a number in a list of length n

Ternary Search

48

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

We can say that T(n) = T() + c

Where n is the length of the list and c is a constant that represents the
comparison operations.

n
3

Ternary Search

49

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T() + c

Now we have to define T()

Ideas?

n
3

n
3

Ternary Search

50

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T() + c

We can do that by dividing again n by 3 so:

 T() = T() + c n
3

n
32

n
3

Ternary Search

51

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T() + c

1) T() = T() + c

substituting equation 2 in equation 1 we get T(n) = T() + 2 c

n
3n

3
n
32

n
32

Ternary Search

52

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T() + c

1) T() = T() + c

1) T(n) = T() + 2 c

again we have to find the definition of T()

n
3n

3
n
32

n
32

n
32

Ternary Search

53

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T() + c

1) T() = T() + c

1) T(n) = T() + 2 c

again we have to find the definition of T() = T() + c

n
3n

3
n
32

n
32

n
32

n
33

Ternary Search

54

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T() + c

1) T() = T() + c

1) T(n) = T() + 2 c

We can use the definition to define T(n)

n
3n

3
n
32

n
32

Ternary Search

55

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T() + c

1) T() = T() + c

1) T(n) = T() + 2 c

We can use the definition to define T(n) = T() + 3 c

n
3n

3
n
32

n
32

n
33

Ternary Search

56

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T() + c

1) T() = T() + c

1) T(n) = T() + 2 c

1) T(n) = T() + 3 c

n
3n

3
n
32

n
32

n
33

You can start recognizing a
pattern…

Ternary Search

57

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T() + c

1) T() = T() + c

1) T(n) = T() + 2 c

1) T(n) = T() + 3 c

n
3n

3
n
32

n
32

n
33

You can start recognizing a
pattern…

T(n) = T() + k cn
3k

Ternary Search

58

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Now we want to know for which k we have T(1) (the base case)

T(n) = T() + k cn
3k

Ternary Search

59

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Now we want to know for which k we have T(1) (the base case)

So we put = 1

Thus n = 3k

And so applying log3 to both sides we get k = log3n

n
3k

Ternary Search

60

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Now we want to know for which k we have T(1) (the base case)

We use k = log3n and put it into the recurrence relation for n=1

T(n) = T(1) + log3n c

Ternary Search

61

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Now we want to know for which k we have T(1) (the base case)

We use k = log3n and put it into the recurrence relation for n=1

T(n) = T(1) + log3n c

Applying the asymptotic notation we get…

Ternary Search

62

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Now we want to know for which k we have T(1) (the base case)

We use k = log3n and put it into the recurrence relation for n=1

T(n) = T(1) + log3n c

T(n) = Θ(log3n)

