Luiss Libera Università Internazionale degli Studi Sociali Guido Carli

Algorithms A.Y. 2022/2023

Lab – Fibonacci and Ternary Search complexity

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©

24 February 2023

courtesy of: Andrea Coletta


```
algorithm fibonacci2(integer n) \rightarrow integer
```

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the n-th Fibonacci number.

Question: How many recursive call the algorithm does approximately?


```
algorithm fibonacci2(integer n) \rightarrow integer
```

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the n-th Fibonacci number.

Question: How many recursive call the algorithm does approximately? **Answer**: $O(2^n)$


```
algorithm fibonacci2(integer n) \rightarrow integer
```

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the *n*-th Fibonacci number.

Question: How many recursive call the algorithm does approximately? **Answer**: $O(2^n)$ **Question**: Can we prove it?


```
algorithm fibonacci2(integer n) \rightarrow integer
```

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the *n*-th Fibonacci number.

Question: How many recursive call the algorithm does approximately? Answer: $O(2^n)$ Question: Can we prove it? Answer: YES!

Theorem: the computational complexity for *Fibonacci2* is $O(2^n)$

What is the Big O notation?

Big *O* notation is a mathematical notation that describes the behavior of a function when the argument tends to infinity

What is the Big O notation?

Big *O* notation is a mathematical notation that describes the behavior of a function when the argument tends to infinity

Why do we need that?

We use it to classify algorithms according to how their run time or space requirements

Formal Definition:

let *f* and *g* be two functions. We can say that f(x) = O(g(x)) when $x \to \infty$ if given two real numbers *M* and x_0 the following relation holds:

 $|f(x)| \le M g(x)$ for all $x > x_{\theta}$

Formal Definition:

let f and g be two functions. We can say that f(x) = O(g(x)) when $x \to \infty$ if given two real numbers *M* and x_0 the following relation holds: M g(x) $|f(x)| \leq M g(x)$ for all $x > x_0$ f(x) $\boldsymbol{x}_{\boldsymbol{\theta}}$

Big O Notation: Rules

To analyze algorithms we want to explore cases with **very large input values**.

In this setting, the contribution of the terms that grow "most quickly" will eventually make the other ones irrelevant.

So we can apply the following rules:

- If f(x) is a sum of several terms we can keep just the one with largest growth rate
- If *f*(*x*) is a product of several factors, **any constants that do not depend on** *x* **(the input) can be omitted**

Big O Notation: Example

Given $f(x) = 6x^4 + 2x^3 + 5$

Applying the rules we get: $f(x) = O(x^4)$.

Theorem: the computational complexity for *Fibonacci2* is $O(2^n)$ **Proof:**

Before we start we are going to use a bit of syntactic sugar:

- we define T(n) = Fibonacci2(n) as the number of operations
 needed to compute the *n*-th Fibonacci number
- we define *c* as a constant value for each operation that can be executed in a constant amount of time (for example sum two numbers)

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

Let's start

Theorem: the computational complexity for *Fibonacci2* is $O(2^n)$ **Proof:**

First of all we can say that the time needed to compute Fibonacci2(n) is equal to:

Fibonacci2(n) = Fibonacci2(n-1) + Fibonacci2(n-2) + c

Thus using our notation, just to be concise, it will become:

T(n) = T(n-1) + T(n-2) + c

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

Now we can assume that the time needed to compute T(n-1) is approximately equal to the time to compute T(n-2). Mathematically we can write this approximation as $T(n-1) \ge T(n-2)$

Is it ok to do that? Yes, but we know that the result won't be exactly the right one

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1) substituting T(n-2) with T(n-1).

But now **the equivalence does not hold anymore** so we have to change = with \leq getting as result $T(n) \leq T(n-1) + T(n-1) + c$.

That we can rewrite as $T(n) \leq 2T(n-1) + c$

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1) as $T(n) \le 2T(n-1) + c$

Why?

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1) as $T(n) \le 2T(n-1) + c$

Why?

Intuitively T(n-1) > T(n-2).

To understand this you can make an example. It requires more time to compute T(5) than T(4)

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1) as $T(n) \le 2T(n-1) + c$

Why?

If you follow the line of reasoning what we are saying is that: $T(6) = T(5) + T(4) + c \le T(5) + T(5) + c$

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1) as $T(n) \le 2T(n-1) + c$

Why do we need this approximation? Simple: to make things easier!

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$
3) $T(n) \le T(n-1) + T(n-1) + c$ or $T(n) \le 2T(n-1) + c$

Now, we need to get the time needed to compute T(n-1)How can we do that? Easy! we can say that:

T(n-1) = T(n-2) + T(n-3) + c

But using the same line of reasoning used before (but now with $T(n-2) \ge T(n-3)$) we get: $T(n-1) \le T(n-2) + T(n-2) + c$

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$
3) $T(n) \le T(n-1) + T(n-1) + c \text{ or } T(n) \le 2T(n-1) + c$

So $T(n-1) \leq T(n-2) + T(n-2) + c$ can be written as $T(n-1) \leq 2T(n-2) + c$

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$
3) $T(n) \le T(n-1) + T(n-1) + c \text{ or } T(n) \le 2T(n-1) + c$
4) $T(n-1) \le 2T(n-2) + c$

You can easily see that we can substitute in equation 3 the equation 4. Even if we make the substitution the **inequality will hold in any case**. So we can write equation 3 as $T(n) \le 2 * (2T(n-2) + c) + c$

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$
3) $T(n) \le T(n-1) + T(n-1) + c \text{ or } T(n) \le 2T(n-1) + c$
4) $T(n-1) \le 2T(n-2) + c$

By simply performing the multiplication we get:

$$T(n) \le 2 * (2T(n-2) + c) + c = 4T(n-2) + 3c$$

Thus: $T(n) \le 4T(n-2) + 3c$

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$
3) $T(n) \le T(n-1) + T(n-1) + c \text{ or } T(n) \le 2T(n-1) + c$
4) $T(n-1) \le 2T(n-2) + c$
5) $T(n) \le 4T(n-2) + 3c$

As you can see the idea is to define T(n) as the time to compute the sub problems!

Graphically it means:

T(n) = T(n-1) + T(n-2) + c

Graphically it means:

T(n) = T(n-1) + T(n-2) + c

Graphically it means: $T(n) = T(n-1) + T(n-2) + c \le T(n-1) + T(n-1) + c$

LUISS T

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$
3) $T(n) \le T(n-1) + T(n-1) + c \text{ or } T(n) \le 2T(n-1) + c$
4) $T(n-1) \le 2T(n-2) + c$
5) $T(n) \le 4T(n-2) + 3c$

We can still follow the same line of reasoning and decompose T(n-2) into sub problems

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$
3) $T(n) \le T(n-1) + T(n-1) + c \text{ or } T(n) \le 2T(n-1) + c$
4) $T(n-1) \le 2T(n-2) + c$
5) $T(n) \le 4T(n-2) + 3c$

 $T(n-2) = T(n-3) + T(n-4) + c \le T(n-3) + T(n-3) + c = 2T(n-3) + c$

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$
3) $T(n) \le T(n-1) + T(n-1) + c \text{ or } T(n) \le 2T(n-1) + c$
4) $T(n-1) \le 2T(n-2) + c$
5) $T(n) \le 4T(n-2) + 3c$

 $T(n-2) = T(n-3) + T(n-4) + c \le T(n-3) + T(n-3) + c = 2T(n-3) + c$ If we substitute this definition of T(n-2) in equation 5 we get:

 $T(n) \le 4(2T(n-3) + c) + 3c = 8T(n-3) + 7c$ LUISS

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1)
$$T(n) = T(n-1) + T(n-2) + c$$

2) $T(n-1) \ge T(n-2)$
3) $T(n) \le T(n-1) + T(n-1) + c \text{ or } T(n) \le 2T(n-1) + c$
4) $T(n-1) \le 2T(n-2) + c$
5) $T(n) \le 4T(n-2) + 3c$
6) $T(n) \le 8T(n-3) + 7c$
7) ...

As you can see it seem there is a patter...

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

1) $T(n) \le 2T(n-1) + c$ 2) $T(n) \le 4T(n-2) + 3c$ 3) $T(n) \le 8T(n-3) + 7c$

- - -

We can generalize it with:

 $T(n) \leq 2^k T(n-k) + (2^k-1)c$

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

 $T(n) \leq 2^k T(n-k) + (2^k-1)c$

Now, which is the value of k such that n-k = 0? Remember: the k here is the value representing the tree depth!

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

 $T(n) \leq 2^k T(n-k) + (2^k-1)c$

Using the following equality: n-k=0

Follows that k = n

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

 $T(n) \leq 2^k T(n-k) + (2^k-1)c$

We can substitute k with n and put $n-k = \theta$ and we get

 $T(n) \leq 2^n T(0) + (2^n - 1) c$

We can say that T(0) executes in constant time so, we get: ...

$$T(n) \leq 2^n T(0) + (2^n - 1) c$$

$$T(n) \le 2^n (0) + (2^n - 1)$$

 $O(1)$

$$T(n) \leq 2^n (1) + (2 - 1)$$

$$T(n) \leq 2^n (1) + (2 - 1)$$

$$T(n)=O(2^n)$$

Theorem: the computational complexity for *Fibonacci2* is *O*(2^{*n*}) *Proof:*

$$T(n)=O(2^n)$$

There are other approximations that are more precise.

Fun fact:

It is possible to prove that the computational complexity of this algorithm is φ^n


```
def ternarySearch(1, r, key, ar):
    if (r >= 1):
        mid1 = 1 + (r - 1) //3
        mid2 = r - (r - 1) //3
        if (ar[mid1] == key):
            return mid1
        if (ar[mid2] == key):
            return mid2
        if (key < ar[mid1]):</pre>
            return ternarySearch(1, mid1 - 1, key, ar)
        elif (key > ar[mid2]):
            return ternarySearch(mid2 + 1, r, key, ar)
        else:
            return ternarySearch(mid1 + 1, mid2 - 1, key, ar)
```

T

LUISS

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

Again we define the relation that describes how many operation are needed to compute the search.

We define T(n) = Ternary(n) as the number of operations needed to search a number in a list of length *n*

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

We can say that
$$T(n) = T(\frac{n}{3}) + c$$

Where *n* is the length of the list and *c* is a constant that represents the comparison operations.

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

1)
$$T(n) = T(\frac{n}{3}) + c$$

Now we have to define $T(\frac{n}{3})$

Ideas?

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

1)
$$T(n) = T(\frac{n}{3}) + c$$

We can do that by dividing again *n* by 3 so:

$$T(\frac{n}{3}) = T(\frac{n}{3^2}) + c$$

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

1)
$$T(n) = T(\frac{n}{3}) + c$$

1)
$$T(\frac{n}{3}) = T(\frac{n}{3^2}) + c$$

substituting equation 2 in equation 1 we get $T(n) = T(\frac{n}{3^2}) + 2c$

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

1)
$$T(n) = T(\frac{n}{3}) + c$$

1) $T(\frac{n}{3}) = T(\frac{n}{3^2}) + c$
1) $T(n) = T(\frac{n}{3^2}) + 2c$

again we have to find the definition of $T(\frac{n}{3^2})$

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

1)
$$T(n) = T(\frac{n}{3}) + c$$

1) $T(\frac{n}{3}) = T(\frac{n}{3^2}) + c$
1) $T(n) = T(\frac{n}{3^2}) + 2c$

again we have to find the definition of $T(\frac{n}{3^2}) = T(\frac{n}{3^3}) + c$

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

1)
$$T(n) = T(\frac{n}{3}) + c$$

1) $T(\frac{n}{3}) = T(\frac{n}{3^2}) + c$
1) $T(n) = T(\frac{n}{3^2}) + 2c$

We can use the definition to define T(n)

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

1) $T(n) = T(\frac{n}{3}) + c$ 1) $T(\frac{n}{3}) = T(\frac{n}{3^2}) + c$ 1) $T(n) = T(\frac{n}{3^2}) + 2c$

We can use the definition to define $T(n) = T(\frac{n}{3^3}) + 3c$

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

1)
$$T(n) = T(\frac{n}{3}) + c$$

1) $T(\frac{n}{3}) = T(\frac{n}{3^2}) + c$
1) $T(n) = T(\frac{n}{3^2}) + 2c$
1) $T(n) = T(\frac{n}{3^3}) + 3c$

You can start recognizing a pattern...

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

1)
$$T(n) = T(\frac{n}{3}) + c$$

1) $T(\frac{n}{3}) = T(\frac{n}{3^2}) + c$
1) $T(n) = T(\frac{n}{3^2}) + 2c$
1) $T(n) = T(\frac{n}{3^3}) + 3c$

You can start recognizing a pattern...

$$T(n) = T(\frac{n}{3^k}) + k c$$

Theorem: the computational complexity for *Ternary* is $\Theta(log_3n)$ **Proof:**

Now we want to know for which k we have T(1) (the base case)

$$T(n) = T(\frac{n}{3^k}) + k c$$

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

Now we want to know for which k we have T(1) (the base case)

So we put
$$\frac{n}{3^k} = 1$$

Thus $n = 3^k$

And so applying log_3 to both sides we get $k = log_3 n$

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

Now we want to know for which k we have T(1) (the base case)

We use $k = log_3 n$ and put it into the recurrence relation for n=1

$$T(n) = T(1) + \log_3 n c$$

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

Now we want to know for which k we have T(1) (the base case)

We use $k = log_3 n$ and put it into the recurrence relation for n=1

$$T(n) = T(1) + \log_3 n c$$

Applying the asymptotic notation we get...

Theorem: the computational complexity for *Ternary* is $\Theta(\log_3 n)$ **Proof:**

Now we want to know for which k we have T(1) (the base case)

We use $k = log_3 n$ and put it into the recurrence relation for n=1

$$T(n) = T(1) + \log_3 n c$$

 $T(n) = \Theta(\log_3 n)$

