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Question: How many recursive call the algorithm 
does approximately?
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Question: How many recursive call the algorithm 
does approximately?
Answer: O(2n)
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Question: How many recursive call the algorithm 
does approximately?
Answer: O(2n)
Question: Can we prove it?
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Question: How many recursive call the algorithm 
does approximately?
Answer: O(2n)
Question: Can we prove it?
Answer: YES!
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Theorem: the computational complexity for Fibonacci2 is O(2n)
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What is the Big O notation? 
Big O notation is a mathematical notation that describes the behavior of 
a function when the argument tends to infinity
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What is the Big O notation? 
Big O notation is a mathematical notation that describes the behavior of 
a function when the argument tends to infinity
Why do we need that?
We use it to classify algorithms according to how their run time or space 
requirements
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Formal Definition:
let f and g be two functions.
We can say that f(x) = O(g(x)) when x → ∞ if given two real 
numbers M and x0 the following relation holds:

|f(x)| ≤ M g(x) for all x > x0



Big O Notation: A Brief Recap

10

Formal Definition:
let f and g be two functions.
We can say that f(x) = O(g(x)) when x → ∞ if given two real 
numbers M and x0 the following relation holds:

|f(x)| ≤ M g(x) for all x > x0

f(x)

M g(x)

x0
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To analyze algorithms we want to explore cases with very large input 
values.  
In this setting, the contribution of the terms that grow "most quickly" will 
eventually make the other ones irrelevant. 
So we can apply the following rules:
● If f(x) is a sum of several terms we can keep just the one with largest 

growth rate
● If f(x) is a product of several factors, any constants that do not 

depend on x  (the input) can be omitted
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Given f(x) = 6x4 + 2x3 + 5

Applying the rules we get: f(x) = O(x4). 
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

Before we start we are going to use a bit of syntactic sugar:

- we define T(n) = Fibonacci2(n) as the number of operations 
needed to compute the n-th Fibonacci number

- we define c as a constant value for each operation that can be 
executed in a constant amount of time (for example sum two 
numbers)
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

Let’s start
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

First of all we can say that the time needed to compute 
Fibonacci2(n) is equal to:

Fibonacci2(n) = Fibonacci2(n-1) + Fibonacci2(n-2) + c

Thus using our notation, just to be concise, it will become:

T(n) = T(n-1) + T(n-2) + c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c

Now we can assume that the time needed to compute T(n-1) is 
approximately equal to the time to compute T(n-2).
Mathematically we can write this approximation as  T(n-1) ≥ T(n-2)

Is it ok to do that? Yes, but we know that the result won’t be 
exactly the right one
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1)
substituting T(n-2) with T(n-1).

But now the equivalence does not hold anymore so we have to 
change = with ≤  getting as result  T(n) ≤ T(n-1) + T(n-1) + c.

That we can rewrite as T(n) ≤ 2T(n-1) + c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1)
as T(n) ≤ 2T(n-1) + c 

Why? 
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1)
as T(n) ≤ 2T(n-1) + c 

Why? 
Intuitively T(n-1) > T(n-2). 
To understand this you can make an example. 
It requires more time to compute T(5) than T(4)
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1)
as T(n) ≤ 2T(n-1) + c 

Why? 
If you follow the line of reasoning what we are saying is that:
T(6) = T(5) + T(4) + c ≤ T(5) + T(5) + c 
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)

Because of it we can rewrite T(n) = T(n-1) + T(n-2) + c (Equation 1)
as T(n) ≤ 2T(n-1) + c 

Why do we need this approximation? 
Simple: to make things easier! 
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c  or T(n) ≤ 2T(n-1) + c

Now, we need to get the time needed to compute T(n-1)  
How can we do that? Easy! we can say that:
T(n-1) = T(n-2) + T(n-3) + c  
But using the same line of reasoning used before 
(but now with T(n-2) ≥ T(n-3)) we get: T(n-1) ≤ T(n-2) + T(n-2) + c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c  or T(n) ≤ 2T(n-1) + c

So T(n-1) ≤ T(n-2) + T(n-2) + c can be written as T(n-1) ≤ 2T(n-2) + c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c  or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c

You can easily see that we can substitute in equation 3 the equation 4.
Even if we make the substitution the inequality will hold in any case.
So we can write equation 3 as T(n) ≤ 2 * (2T(n-2) + c) + c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c  or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c

By simply performing the multiplication we get:

T(n) ≤ 2 * (2T(n-2) + c) + c = 4T(n-2) + 3c

Thus: T(n) ≤ 4T(n-2) + 3c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c  or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c
5) T(n) ≤ 4T(n-2) + 3c

As you can see the idea is to define T(n) as the time to compute 
the sub problems!
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Graphically it means:

F(n)

F(n-2)F(n-1)

F(n-3) F(n-4)F(n-2) F(n-3)

T(n) = T(n-1) + T(n-2) + c

… …… …… … ……
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Graphically it means:

F(6)

F(4)F(5)

F(3) F(2)F(4) F(3)

T(n) = T(n-1) + T(n-2) + c

For example if n=6

T(6) = T(5) + T(4) + c

… …… …… … ……
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Graphically it means:

F(6)

F(4)F(5)

F(3) F(2)F(4) F(3)

T(n) = T(n-1) + T(n-2) + c ≤ T(n-1) + T(n-1) + c

… …… …… … ……

F(6)

F(5)F(5)

F(4) F(4)F(4) F(4)

… …… …… … ……

≤
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Graphically it means:

F(6)
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F(3) F(2)F(4) F(3)
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Graphically it means:

F(6)

F(4)F(5)

F(3) F(2)F(4) F(3)
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c  or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c
5) T(n) ≤ 4T(n-2) + 3c

We can still follow the same line of reasoning and decompose 
T(n-2) into sub problems
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c  or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c
5) T(n) ≤ 4T(n-2) + 3c

T(n-2) = T(n-3) + T(n-4) + c ≤ T(n-3) + T(n-3) + c = 2T(n-3) + c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c  or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c
5) T(n) ≤ 4T(n-2) + 3c

T(n-2) = T(n-3) + T(n-4) + c ≤ T(n-3) + T(n-3) + c = 2T(n-3) + c
If we substitute this definition of T(n-2) in equation 5 we get:

T(n) ≤ 4(2T(n-3) +c) + 3c = 8T(n-3) + 7c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) = T(n-1) + T(n-2) + c
2) T(n-1) ≥ T(n-2)
3) T(n) ≤ T(n-1) + T(n-1) + c  or T(n) ≤ 2T(n-1) + c
4) T(n-1) ≤ 2T(n-2) + c
5) T(n) ≤ 4T(n-2) + 3c
6) T(n) ≤ 8T(n-3) + 7c
7) …

As you can see it seem there is a patter…
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

1) T(n) ≤ 2T(n-1) + c
2) T(n) ≤ 4T(n-2) + 3c
3) T(n) ≤ 8T(n-3) + 7c
…

We can generalize it with:

T(n) ≤ 2k T(n-k) + (2k-1)c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2k T(n-k) + (2k-1)c

Now, which is the value of k such that n-k = 0?
Remember: the k here is the value representing the tree depth!
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2k T(n-k) + (2k-1)c

Using the following equality: n-k=0

Follows that k = n
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2k T(n-k) + (2k-1)c

We can substitute k with n and put n-k = 0 and we get

T(n) ≤ 2n T(0) + (2n - 1) c

We can say that T(0) executes in constant time so, we get: ...
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2n T(0) + (2n - 1) c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2n T(0) + (2n - 1) c

O(1)
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2n T(0) + (2n - 1) c
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) ≤ 2n T(0) + (2n - 1) c

T(n) = O(2n)
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Theorem: the computational complexity for Fibonacci2 is O(2n)
Proof:

T(n) = O(2n)

There are other approximations that are more precise.

Fun fact: 
It is possible to prove that the computational complexity of this 
algorithm is φn
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def ternarySearch(l, r, key, ar):
    if (r >= l):
        mid1 = l + (r - l) //3
        mid2 = r - (r - l) //3  
        if (ar[mid1] == key): 
            return mid1         
        if (ar[mid2] == key): 
            return mid2 
        if (key < ar[mid1]): 
            return ternarySearch(l, mid1 - 1, key, ar) 
        elif (key > ar[mid2]): 
            return ternarySearch(mid2 + 1, r, key, ar)       
        else: 
            return ternarySearch(mid1 + 1, mid2 - 1, key, ar)     
    return -1
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Again we define the relation that describes how many operation are 
needed to compute the search.

We define T(n) = Ternary(n) as the number of operations needed to 
search a number in a list of length n 



Ternary Search 

48

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

We can say that T(n) = T(    ) + c

Where n is the length of the list and c is a constant that represents the 
comparison operations.

n
3
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T(    ) + c

Now we have to define T(    )

Ideas?

n
3

n
3
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T(    ) + c

We can do that by dividing again n by 3 so:

 T(    ) =  T(    ) + c n
3

n
32

n
3
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T(    ) + c

1) T(    ) =  T(    ) + c 

substituting equation 2 in equation 1 we get T(n) = T(    ) + 2 c

n
3n

3
n
32

n
32
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T(    ) + c

1) T(    ) =  T(    ) + c 

1) T(n) = T(    ) + 2 c

again we have to find the definition of T(     )

n
3n

3
n
32

n
32

n
32
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T(    ) + c

1) T(    ) =  T(    ) + c 

1) T(n) = T(    ) + 2 c

again we have to find the definition of T(     ) = T(     ) + c

n
3n

3
n
32

n
32

n
32

n
33
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T(    ) + c

1) T(    ) =  T(    ) + c 

1) T(n) = T(    ) + 2 c

We can use the definition to define  T(n) 

n
3n

3
n
32

n
32
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T(    ) + c

1) T(    ) =  T(    ) + c 

1) T(n) = T(    ) + 2 c

We can use the definition to define  T(n) = T(      ) + 3 c

n
3n

3
n
32

n
32

n
33
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T(    ) + c

1) T(    ) =  T(    ) + c 

1) T(n) = T(    ) + 2 c

1) T(n) = T(      ) + 3 c

n
3n

3
n
32

n
32

n
33

You can start recognizing a 
pattern…



Ternary Search 

57

Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

1) T(n) = T(    ) + c

1) T(    ) =  T(    ) + c 

1) T(n) = T(    ) + 2 c

1) T(n) = T(      ) + 3 c

n
3n

3
n
32

n
32

n
33

You can start recognizing a 
pattern…

T(n) = T(      ) + k cn
3k
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Now we want to know for which k we have T(1) (the base case)

T(n) = T(      ) + k cn
3k
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Now we want to know for which k we have T(1) (the base case)

So we put       = 1

Thus n = 3k

And so applying  log3 to both sides we get  k = log3n

n
3k
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Now we want to know for which k we have T(1) (the base case)

We use k = log3n and put it into the recurrence relation for n=1

T(n) = T(1) +  log3n  c
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Now we want to know for which k we have T(1) (the base case)

We use k = log3n and put it into the recurrence relation for n=1

T(n) = T(1) +  log3n  c

Applying the asymptotic notation we get…
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Theorem: the computational complexity for Ternary is Θ(log3n)
Proof:

Now we want to know for which k we have T(1) (the base case)

We use k = log3n and put it into the recurrence relation for n=1

T(n) = T(1) +  log3n  c

T(n) = Θ(log3n )


