Algorithms A.Y. 2022/2023

Lab - Fibonacci and Ternary Search complexity

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©
24 February 2023
courtesy of: Andrea Coletta

Dipartimento di Impresa e Management

Fibonacci - A first recursive approach

```
algorithm fibonacci2(integer n)}->\mathrm{ integer
    if (n\leq2) then return 1
    else return fibonacci2(n-1) + fibonacci2(n-2)
```

Figure 1.4 Algorithm fibonacci2 to compute the n-th Fibonacci number.
Question: How many recursive call the algorithm does approximately?

Fibonacci - A first recursive approach

```
algorithm fibonacci2(integer n)}->\mathrm{ integer
    if (n\leq2) then return 1
    else return fibonacci2(n-1) + fibonacci2(n-2)
```

Figure 1.4 Algorithm fibonacci2 to compute the n-th Fibonacci number.
Question: How many recursive call the algorithm does approximately?
Answer: $O\left(2^{n}\right)$

Fibonacci - A first recursive approach

```
algorithm fibonacci2(integer n)}->\mathrm{ integer
    if (n\leq2) then return 1
    else return fibonacci2(n-1) + fibonacci2(n-2)
```

Figure 1.4 Algorithm fibonacci2 to compute the n-th Fibonacci number.
Question: How many recursive call the algorithm does approximately?
Answer: $O\left(2^{n}\right)$
Question: Can we prove it?

Fibonacci - A first recursive approach

```
algorithm fibonacci2(integer n)}->\mathrm{ integer
    if (n\leq2) then return 1
    else return fibonacci2(n-1) + fibonacci2(n-2)
```

Figure 1.4 Algorithm fibonacci2 to compute the n-th Fibonacci number.
Question: How many recursive call the algorithm does approximately?
Answer: $O\left(2^{n}\right)$
Question: Can we prove it?
Answer: YES!

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$

Big O Notation: A Brief Recap

What is the Big O notation?

Big \boldsymbol{O} notation is a mathematical notation that describes the behavior of a function when the argument tends to infinity

Big O Notation: A Brief Recap

What is the Big O notation?

Big \boldsymbol{O} notation is a mathematical notation that describes the behavior of a function when the argument tends to infinity

Why do we need that?

We use it to classify algorithms according to how their run time or space requirements

Big O Notation: A Brief Recap

Formal Definition:

let f and g be two functions.
We can say that $f(x)=O(g(x))$ when $x \rightarrow \infty$ if given two real numbers M and x_{0} the following relation holds:
$|f(x)| \leq M g(x)$ for all $x>x_{0}$

Big O Notation: A Brief Recap

Formal Definition:

let f and g be two functions.
We can say that $f(x)=O(g(x))$ when $x \rightarrow \infty$ if given two real numbers M and x_{0} the following relation holds: $M g(x)$
$|f(x)| \leq M g(x)$ for all $x>x_{0}$

Big O Notation: Rules

To analyze algorithms we want to explore cases with very large input values.
In this setting, the contribution of the terms that grow "most quickly" will eventually make the other ones irrelevant.
So we can apply the following rules:

- If $f(x)$ is a sum of several terms we can keep just the one with largest growth rate
- If $f(x)$ is a product of several factors, any constants that do not depend on x (the input) can be omitted

Big O Notation: Example

Given $f(x)=6 x^{4}+2 x^{3}+5$
Applying the rules we get: $f(x)=\boldsymbol{O}\left(x^{4}\right)$.

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

Before we start we are going to use a bit of syntactic sugar:

- we define $\boldsymbol{T}(\boldsymbol{n})=$ Fibonacci2(\boldsymbol{n}) as the number of operations needed to compute the n-th Fibonacci number
- we define c as a constant value for each operation that can be executed in a constant amount of time (for example sum two numbers)

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

Let's start

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

First of all we can say that the time needed to compute Fibonacci2(n) is equal to:

$$
\text { Fibonacci2(n) = Fibonacci2(n-1) }+ \text { Fibonacci2(n-2) }+c
$$

Thus using our notation, just to be concise, it will become:

$$
T(n)=T(n-1)+T(n-2)+c
$$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$

Now we can assume that the time needed to compute $T(n-1)$ is approximately equal to the time to compute $T(n-2)$. Mathematically we can write this approximation as $T(n-1) \geq T(n-2)$

Is it ok to do that? Yes, but we know that the result won't be exactly the right one

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$

Because of it we can rewrite $T(n)=T(n-1)+T(n-2)+c$ (Equation 1) substituting $\boldsymbol{T}(n-2)$ with $T(n-1)$.

But now the equivalence does not hold anymore so we have to change $=$ with \leq getting as result $T(n) \leq T(n-1)+T(n-1)+c$.

That we can rewrite as $\boldsymbol{T}(\boldsymbol{n}) \leq 2 \boldsymbol{T}(\boldsymbol{n}-1)+c$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$

Because of it we can rewrite $T(n)=T(n-1)+T(n-2)+c$ (Equation 1) as $T(n) \leq 2 T(n-1)+c$

Why?

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$

Because of it we can rewrite $T(n)=T(n-1)+T(n-2)+c$ (Equation 1) as $T(n) \leq 2 T(n-1)+c$

Why?

Intuitively $T(n-1)>T(n-2)$.
To understand this you can make an example.
It requires more time to compute $T(5)$ than $T(4)$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$

Because of it we can rewrite $T(n)=T(n-1)+T(n-2)+c$ (Equation 1) as $T(n) \leq 2 T(n-1)+c$

Why?

If you follow the line of reasoning what we are saying is that: $T(6)=T(5)+T(4)+c \leq T(5)+T(5)+c$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$

Because of it we can rewrite $T(n)=T(n-1)+T(n-2)+c$ (Equation 1) as $T(n) \leq 2 T(n-1)+c$

Why do we need this approximation?
Simple: to make things easier!

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$
3) $T(n) \leq T(n-1)+T(n-1)+c$ or $T(n) \leq 2 T(n-1)+c$

Now, we need to get the time needed to compute $T(n-1)$ How can we do that? Easy! we can say that:
$T(n-1)=T(n-2)+T(n-3)+c$
But using the same line of reasoning used before (but now with $T(n-2) \geq T(n-3)$) we get: $T(n-1) \leq T(n-2)+T(n-2)+c$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$
3) $T(n) \leq T(n-1)+T(n-1)+c$ or $T(n) \leq 2 T(n-1)+c$

So $T(n-1) \leq T(n-2)+T(n-2)+c$ can be written as $T(n-1) \leq 2 T(n-2)+c$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$
3) $T(n) \leq T(n-1)+T(n-1)+c$ or $T(n) \leq 2 T(n-1)+c$
4) $T(n-1) \leq 2 T(n-2)+c$

You can easily see that we can substitute in equation 3 the equation 4. Even if we make the substitution the inequality will hold in any case. So we can write equation 3 as $T(n) \leq 2 *(2 T(n-2)+c)+c$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$
3) $T(n) \leq T(n-1)+T(n-1)+c$ or $T(n) \leq 2 T(n-1)+c$
4) $T(n-1) \leq 2 T(n-2)+c$

By simply performing the multiplication we get:
$T(n) \leq 2 *(2 T(n-2)+c)+c=4 T(n-2)+3 c$
Thus: $\boldsymbol{T}(n) \leq 4 T(n-2)+3 c$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$
3) $T(n) \leq T(n-1)+T(n-1)+c$ or $T(n) \leq 2 T(n-1)+c$
4) $T(n-1) \leq 2 T(n-2)+c$
5) $T(n) \leq 4 T(n-2)+3 c$

As you can see the idea is to define $T(n)$ as the time to compute the sub problems!

Fibonacci - A first recursive approach

Graphically it means:

$$
T(n)=T(n-1)+T(n-2)+c
$$

Fibonacci - A first recursive approach

Graphically it means:

$$
T(n)=T(n-1)+T(n-2)+c
$$

Fibonacci - A first recursive approach

Graphically it means: $\quad T(n)=T(n-1)+T(n-2)+c \leq T(n-1)+T(n-1)+c$

Fibonacci - A first recursive approach

Graphically it means: $\quad T(n)=T(n-1)+T(n-2)+c \leq T(n-1)+T(n-1)+c$

LUISS $\overline{\overline{\mathrm{q} I \mathrm{P}}}$

Fibonacci - A first recursive approach

Graphically it means: $\quad T(n)=T(n-1)+T(n-2)+c \leq T(n-1)+T(n-1)+c$

Fibonacci - A first recursive approach

Graphically it means: $\quad T(n)=T(n-1)+T(n-2)+c \leq T(n-1)+T(n-1)+c$
\leq

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$
3) $T(n) \leq T(n-1)+T(n-1)+c$ or $T(n) \leq 2 T(n-1)+c$
4) $T(n-1) \leq 2 T(n-2)+c$
5) $T(n) \leq 4 T(n-2)+3 c$

We can still follow the same line of reasoning and decompose $T(n-2)$ into sub problems

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$
3) $T(n) \leq T(n-1)+T(n-1)+c$ or $T(n) \leq 2 T(n-1)+c$
4) $T(n-1) \leq 2 T(n-2)+c$
5) $T(n) \leq 4 T(n-2)+3 c$

$$
T(n-2)=T(n-3)+T(n-4)+c \leq T(n-3)+T(n-3)+c=2 T(n-3)+c
$$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$
3) $T(n) \leq T(n-1)+T(n-1)+c$ or $T(n) \leq 2 T(n-1)+c$
4) $T(n-1) \leq 2 T(n-2)+c$
5) $T(n) \leq 4 T(n-2)+3 c$
$T(n-2)=T(n-3)+T(n-4)+c \leq T(n-3)+T(n-3)+c=2 T(n-3)+c$ If we substitute this definition of $T(n-2)$ in equation 5 we get:
$T(n) \leq 4(2 T(n-3)+c)+3 c=8 T(n-3)+7 c$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

1) $T(n)=T(n-1)+T(n-2)+c$
2) $T(n-1) \geq T(n-2)$
3) $T(n) \leq T(n-1)+T(n-1)+c$ or $T(n) \leq 2 T(n-1)+c$
4) $T(n-1) \leq 2 T(n-2)+c$
5) $T(n) \leq 4 T(n-2)+3 c$
6) $T(n) \leq 8 T(n-3)+7 c$
7) ...

As you can see it seem there is a patter...

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

$$
\begin{array}{ll}
\text { 1) } & T(n) \leq 2 T(n-1)+c \\
\text { 2) } & T(n) \leq 4 T(n-2)+3 c \\
\text { 3) } & T(n) \leq 8 T(n-3)+7 c
\end{array}
$$

We can generalize it with:

$$
T(n) \leq 2^{k} T(n-k)+\left(2^{k}-1\right) c
$$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:
$T(n) \leq 2^{k} T(n-k)+\left(2^{k}-1\right) c$
Now, which is the value of k such that $n-k=0$? Remember: the k here is the value representing the tree depth!

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:
$T(n) \leq 2^{k} T(n-k)+\left(2^{k}-1\right) c$
Using the following equality: $n-k=0$
Follows that $\boldsymbol{k}=\boldsymbol{n}$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:
$T(n) \leq 2^{k} T(n-k)+\left(2^{k}-1\right) c$
We can substitute k with n and put $n-k=0$ and we get
$T(n) \leq 2^{n} T(0)+\left(2^{n}-1\right) c$
We can say that $T(0)$ executes in constant time so, we get: ...

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

$$
T(n) \leq 2^{n} T(0)+\left(2^{n}-1\right) c
$$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

$$
\left.T(n) \leq 2^{n}\right),(2)+(2,1)
$$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

$$
\left.T(n) \leq 2^{n}, 1\right)+(2(-1)
$$

$$
T(n)=O\left(2^{n}\right)
$$

Fibonacci - A first recursive approach

Theorem: the computational complexity for Fibonacci2 is $O\left(2^{n}\right)$ Proof:

$$
T(n)=O\left(2^{n}\right)
$$

There are other approximations that are more precise.

Fun fact:

It is possible to prove that the computational complexity of this algorithm is φ^{n}

Ternary Search

```
def ternarySearch(l, r, key, ar):
    if (r >= l):
        mid1 = l + (r - l) //3
        mid2 = r - (r - l) //3
        if (ar[mid1] == key):
            return midl
        if (ar[mid2] == key):
            return mid2
        if (key < ar[mid1]):
            return ternarySearch(l, mid1 - 1, key, ar)
        elif (key > ar[mid2]):
            return ternarySearch(mid2 + 1, r, key, ar)
        else:
            return ternarySearch(mid1 + 1, mid2 - 1, key, ar)
    return -1
```


Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

Again we define the relation that describes how many operation are needed to compute the search.

We define $\boldsymbol{T}(\boldsymbol{n})=\operatorname{Ternary}(\boldsymbol{n})$ as the number of operations needed to search a number in a list of length n

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

We can say that $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{T}\left(\frac{n}{3}\right)+\boldsymbol{c}$
Where n is the length of the list and c is a constant that represents the comparison operations.

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

1) $T(n)=T\left(\frac{n}{3}\right)+c$

Now we have to define $T\left(\frac{n}{3}\right)$
Ideas?

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

$$
\text { 1) } T(n)=T\left(\frac{n}{3}\right)+c
$$

We can do that by dividing again n by 3 so:

$$
T\left(\frac{n}{3}\right)=T\left(\frac{n}{3^{2}}\right)+c
$$

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

1) $T(n)=T\left(\frac{n}{3}\right)+c$
2) $T\left(\frac{n}{3}\right)=T\left(\frac{n}{3^{2}}\right)+c$
substituting equation 2 in equation 1 we get $T(n)=T\left(\frac{n}{3^{2}}\right)+2 c$

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

1) $T(n)=T\left(\frac{n}{3}\right)+c$
2) $T\left(\frac{n}{3}\right)=T\left(\frac{n}{3^{2}}\right)+c$
3) $T(n)=T\left(\frac{n}{3^{2}}\right)+2 c$
again we have to find the definition of $T\left(\frac{n}{3^{2}}\right)$

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

1) $T(n)=T\left(\frac{n}{3}\right)+c$
2) $T\left(\frac{n}{3}\right)=T\left(\frac{n}{3^{2}}\right)+c$
3) $T(n)=T\left(\frac{n}{3^{2}}\right)+2 c$
again we have to find the definition of $T\left(\frac{n}{3^{2}}\right)=T\left(\frac{n}{3^{3}}\right)+c$

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

1) $T(n)=T\left(\frac{n}{3}\right)+c$
2) $T\left(\frac{n}{3}\right)=T\left(\frac{n}{3^{2}}\right)+c$
3) $T(n)=T\left(\frac{n}{3^{2}}\right)+2 c$

We can use the definition to define $T(n)$

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

1) $T(n)=T\left(\frac{n}{3}\right)+c$
2) $T\left(\frac{n}{3}\right)=T\left(\frac{n}{3^{2}}\right)+c$
3) $T(n)=T\left(\frac{n}{3^{2}}\right)+2 c$

We can use the definition to define $T(n)=T\left(\frac{n}{3^{3}}\right)+3 c$

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

1) $T(n)=T\left(\frac{n}{3}\right)+c$
2) $T\left(\frac{n}{3}\right)=T\left(\frac{n}{3^{2}}\right)+c$
3) $T(n)=T\left(\frac{n}{3^{2}}\right)+2 c$
4) $T(n)=T\left(\frac{n}{3^{3}}\right)+3 c$

You can start recognizing a pattern...

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

$$
\begin{array}{ll}
\text { 1) } T(n)=T\left(\frac{n}{3}\right)+c & \text { You can start recognizing a } \\
\text { 1) } T\left(\frac{n}{3}\right)=T\left(\frac{n}{3^{2}}\right)+c & \text { pattern... } \\
\text { 1) } T(n)=T\left(\frac{n}{3^{2}}\right)+2 c & T(n)=T\left(\frac{n}{3^{k}}\right)+k c \\
\text { 1) } T(n)=T\left(\frac{n}{3^{3}}\right)+3 c &
\end{array}
$$

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

Now we want to know for which k we have $T(1)$ (the base case)

$$
T(n)=T\left(\frac{n}{3^{k}}\right)+k c
$$

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

Now we want to know for which k we have $T(1)$ (the base case)
So we put $\frac{n}{3^{k}}=1$
Thus $n=3^{k}$
And so applying $\log _{3}$ to both sides we get $k=\log _{3} n$

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

Now we want to know for which k we have $T(1)$ (the base case)
We use $k=\log _{3} n$ and put it into the recurrence relation for $n=1$

$$
T(n)=T(1)+\log _{3} n c
$$

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

Now we want to know for which k we have $T(1)$ (the base case)
We use $k=\log _{3} n$ and put it into the recurrence relation for $n=1$
$T(n)=T(1)+\log _{3} n c$
Applying the asymptotic notation we get...

Ternary Search

Theorem: the computational complexity for Ternary is $\Theta\left(\log _{3} n\right)$ Proof:

Now we want to know for which k we have $T(1)$ (the base case)
We use $k=\log _{3} n$ and put it into the recurrence relation for $n=1$

$$
\begin{aligned}
& T(n)=T(1)+\log _{3} n c \\
& \boldsymbol{T}(\boldsymbol{n})=\boldsymbol{\Theta}\left(\boldsymbol{\operatorname { l o g }}_{\mathbf{3}} \boldsymbol{n}\right)
\end{aligned}
$$

