
Lab – Asymptotic Notation & Bubble Sort

Slide statica
Esempio di copertina con fondo bianco

Algorithms A.Y. 2022/2023

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©

17 February 2023 courtesy of: Andrea Coletta

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Lab Lecture 3

2

Lab lecture 3:

❖ Asymptotic Notation

❖ Bubble Sort

❖ Q/A project

Lab Lecture 3 – Asymptotic Notation

3
Check this out: https://www.bigocheatsheet.com/

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

4
Check this out: https://www.bigocheatsheet.com/

O(1): An algorithm is
said to have a
constant execution
time when it is not
dependent on the
input data (n)

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

5
Check this out: https://www.bigocheatsheet.com/

O(1) example:

def get_first(data):
 return data[0]

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

6
Check this out: https://www.bigocheatsheet.com/

O(log n): An algorithm
is said to have a
logarithmic time
complexity when it
reduces the size of the
input data in each step

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

7
Check this out: https://www.bigocheatsheet.com/

O(log n) example:
binary search

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

8
Check this out: https://www.bigocheatsheet.com/

O(n): An algorithm is
said to have a linear
time complexity when
the running time
increases at most
linearly with the size of
the input data.

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

9
Check this out: https://www.bigocheatsheet.com/

O(n) example:
linear search in a list

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

10
Check this out: https://www.bigocheatsheet.com/

O(n log n):
An algorithm is said to
have a quasilinear time
complexity when each
operation in the input
data have a logarithm
time complexity.

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

11
Check this out: https://www.bigocheatsheet.com/

O(n log n) example:
merge sort or linear
algorithm + binary
search for each
element

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

12
Check this out: https://www.bigocheatsheet.com/

O(n2):
An algorithm is said to
have a quadratic time
complexity when it
needs to perform a
linear time operation
for each value in the
input data

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

13
Check this out: https://www.bigocheatsheet.com/

O(n2) example:
explore a square matrix

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

14
Check this out: https://www.bigocheatsheet.com/

O(2n):
An algorithm is said to
have an exponential
time complexity when
the growth doubles
with each addition to
the input data set.

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

15
Check this out: https://www.bigocheatsheet.com/

O(2n) example:
fibonacci

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

16
Check this out: https://www.bigocheatsheet.com/

O(n!):
An algorithm is said to
have a factorial time
complexity when it
grows in a factorial way
based on the size of
the input data

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

17
Check this out: https://www.bigocheatsheet.com/

O(n!) example:
compute all the
permutation of n
elements. Factorial
function grows very
rapidly. Just to
compare:

210 = 1024
10! = 3628800

https://www.bigocheatsheet.com/

Lab Lecture 3 – Asymptotic Notation

18
Check this out: https://www.bigocheatsheet.com/

Fun fact:
Unfortunately a lot of
interesting problems
can be solved only
using algorithm that
run in O(n!) or O(2n)

https://www.bigocheatsheet.com/

Lab Lecture 3 – Sorting

19

Sorting Algorithms:
• Bubble Sort

• Insertion Sort

• Merge Sort

• Quick Sort

• …

Lab Lecture 3 – Bubble Sort

20

Check this out:
https://dfordeveloper.github.io/study-sorting/

General Idea:

Traverse a collection of elements moving from the

start to the end

Move the largest value toward the end using

pairwise comparisons and swapping

https://dfordeveloper.github.io/study-sorting/

Lab Lecture 3 – Bubble Sort

21

Bubble Sort takes an unordered collection and
makes it an ordered one.

512354277 101

0 1 2 3 4 5Index:

1014235125 77

0 1 2 3 4 5Index:

Value:

Value: Before applying bubble
sort

After applying
bubble sort

Lab Lecture 3 – Bubble Sort

22

How does it work?

512354277 101

0 1 2 3 4 5Index:

1014235125 77

0 1 2 3 4 5Index:

Value:

Value: Before applying bubble
sort

After applying
bubble sort

Lab Lecture 3 – Bubble Sort

23

First pass: Let’s Start!

512354277 101

0 1 2 3 4 5Index:

Value:

512354277 101

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

24

First pass: check if index 0 and 1 must be swapped

512354277 101

0 1 2 3 4 5Index:

Value:

512354277 101

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

25

First pass: Yes! because 77 > 42

512354277 101

0 1 2 3 4 5Index:

Value:

512357742 101

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

26

First pass: check if index 1 and 2 must be swapped

512354277 101

0 1 2 3 4 5Index:

Value:

512357742 101

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

27

First pass: Yes! Because 77 > 35

512354277 101

0 1 2 3 4 5Index:

Value:

512773542 101

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

28

First pass: check if index 2 and 3 must be swapped

512354277 101

0 1 2 3 4 5Index:

Value:

512773542 101

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

29

First pass: Yes! Because 77 > 12

512354277 101

0 1 2 3 4 5Index:

Value:

577123542 101

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

30

First pass: check if index 3 and 4 must be swapped

512354277 101

0 1 2 3 4 5Index:

Value:

577123542 101

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

31

First pass: No! Because 77 < 105

512354277 101

0 1 2 3 4 5Index:

Value:

577123542 101

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

32

First pass: check if index 4 and 5 must be swapped

512354277 101

0 1 2 3 4 5Index:

Value:

577123542 101

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

33

First pass: Yes! because 101 > 5

512354277 101

0 1 2 3 4 5Index:

Value:

10177123542 5

0 1 2 3 4 5Index:

Value:

Before applying bubble
sort

Algorithm applied

Lab Lecture 3 – Bubble Sort

34

Now, we need to repeat this process over and
over until the list is ordered!

10177123542 5

0 1 2 3 4 5Index:

Value:

35

Naive Bubble Sort(A Array)

 for i in range(len(A)):

 for j in range(len(A) - 1):

 if(A[j] > A[j+1]):

 Swap(A[j], A[j+1])

 endloop

 endloop

Return A

In
ne

r l
oo

p

O
ut

er
 lo

op

Lab Lecture 3 – Naive Bubble Sort Pseudocode

Implementation: Please implement the pseudocode on the jupyter
notebook

Lab Lecture 3 – Bubble Sort

36

Exercise at home: Starting from the result of the first
pass complete the algorithm execution to get the correct
result

10177123542 5

0 1 2 3 4 5Index:

Value:

Organize your workspace as follow:

Second pass:
Comparison 1: 42 > 35? Yes, Result:
Etc…

Third pass:
…

…
Final pass:

10177123542 5

10177123542 5

Lab Lecture 3 – Naive Bubble Sort

37

Question:
❏ Which is the computational complexity ?

Lab Lecture 3 – Naive Bubble Sort

38

Question:
❏ Which is the computational complexity ?

Answer:
❏ The computational complexity is O(n2)

Exercise at home: formally prove the computational

complexity of O(n2)

Lab Lecture 3 – Naive Bubble Sort

39

It seems like the naive version is a way too
naive!

Question:
❏ Can you came up with an idea to reduce the

amount of operations, just modifying the inner
for loop?

40

Improved Bubble Sort(A Array)

 for i in range(len(A)):

 for j in range(len(A) - i - 1):

 if(A[j] > A[j + 1]):

 Swap(A[j], A[j + 1])

 endloop

 endloop

Return A

In
ne

r l
oo

p

O
ut

er
 lo

op

Lab Lecture 3 – Improved Bubble Sort Pseudocode

Implementation: Please implement the pseudocode on the jupyter
notebook

Lab Lecture 3 – Improved Bubble Sort

41

Questions:
❏ Which is the computational complexity in this

case?

Lab Lecture 3 – Improved Bubble Sort

42

Questions:
❏ Which is the computational complexity in this

case?
Answer:

❏ Asymptotically it is always the same! O(n2)

Lab Lecture 3 – Improved Bubble Sort

43

It seems like even this version can be
improved!

Question:
❏ Can you came up with an idea to reduce the

amount of operations, just using a particular
exit condition?

44

Flag Bubble Sort(A Array)

 for i in range(len(A)):

 swap_flag = False

 for j in range(len(A) - i - 1):

 if(A[j] > A[j + 1]):

 swap_flag = True

 Swap(A[j], A[j + 1])

 endloop

 if swap_flag is False:

 return A

 endloop

Return A

In
ne

r l
oo

p

O
ut

er
 lo

op

Lab Lecture 3 – A further Improvement in Bubble Sort Pseudocode

Lab Lecture 3 – Bubble Sort

45

Question:
❏ Which is the best case?
❏ What is the complexity in that case?

Lab Lecture 3 – Bubble Sort

46

Question:
❏ Which is the best case?
❏ What is the complexity in that case?

1014235125 77

0 1 2 3 4 5Index:

Value:

Answer: if the list is ordered, the complexity is O(n),
because we need just a single pass

Lab Lecture 3 – Bubble Sort

47

Question:
❏ Which is the worst case?
❏ What is the complexity in that case?

Lab Lecture 3 – Bubble Sort

48

Question:
❏ Which is the worst case?
❏ What is the complexity in that case?

5354277101 12

0 1 2 3 4 5Index:

Value:

Answer: if the list is in reverse order, the complexity
is O(n2), because we need compare each element with
any other element within the list

Lab Lecture 3 – Bubble Sort

49

Question:
❏ Which is the average case?
❏ What is the complexity in that case?

Lab Lecture 3 – Bubble Sort

50

Question:
❏ Which is the average case?
❏ What is the complexity in that case?

7710142535 12

0 1 2 3 4 5Index:

Value:

Answer: in the average case the complexity is O(n2)

Lab Lecture 3 – Bubble Sort

51

Question:
❏ What about the space complexity?

Lab Lecture 3 – Bubble Sort

52

Question:
❏ What about the space complexity?

Answer: in all the three versions of Bubble Sort the
space complexity is O(1).

Bubble sort requires only a fixed amount of extra

space for the flag, and the other variables.

It is an in-place sorting algorithm, which modifies the

original array's elements to sort the given array. It

doesn’t need extra space!

