Luiss
Libera Universita Internazionale degli Studi Sociali Guido Carli

Algorithms A.Y. 2022/2023
Lab — Asymptotic Notation & Bubble Sort

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@Iuiss.it©

17 February 2023 courtesy of: Andrea Coletta

— P
LU I S S G]““r Dipartimento di Impresa e Management IIII”



mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Lab Lecture 3

Lab lecture 3:

\/

*%* Asymptotic Notation
¢ Bubble Sort
¢ Q/A project

®
-

©
@
-
3
®
S
~

implement

LUISS r



Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart

Operations

Elements

Check this out: https://www.bigocheatsheet.com/

LUISS -r


https://www.bigocheatsheet.com/

Operations

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
(HorrtBLe] (ad] Fai | [Good] [Excelient]

O(1): An algorithm is
said to have a
constant execution
time when it is not
dependent on the
input data (n)

Elements

Check this out: https://www.bigocheatsheet.com/

LUISS -r


https://www.bigocheatsheet.com/

Operations

LUISS

i

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
[Forri1e] [5ad] [Fatr [Good [ExceTEend

O(1) example:

def get first(data):
return data[0]

Elements

Check this out: https://www.bigocheatsheet.com/



https://www.bigocheatsheet.com/

Operations

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
(HorrtBLe] (ad] Fai | [Good] [Excelient]

O(log n): An algorithm
is said to have a
logarithmic time
complexity when it
reduces the size of the
input data in each step

Elements

LUISS aF Check this out: https://www.bigocheatsheet.com/


https://www.bigocheatsheet.com/

Operations

LUISS

i

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
[Forri1e] [5ad] [Fatr [Good [ExceTEend

O(log n) example:
binary search

Elements

Check this out: https://www.bigocheatsheet.com/



https://www.bigocheatsheet.com/

Operations

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
(HorrtBLe] (ad] Fai | [Good] [Excelient]

O(n): An algorithm is
said to have a linear
time complexity when
the running time
increases at most
linearly with the size of
the input data.

/

LUISS aF Check this out: https://www.bigocheatsheet.com/

Elements



https://www.bigocheatsheet.com/

Operations

LUISS

i

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
[Forri1e] [5ad] [Fatr [Good [ExceTEend

O(n) example:
linear search in a list

Elements

Check this out: https://www.bigocheatsheet.com/



https://www.bigocheatsheet.com/

Operations

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
(HorrtBLe] (ad] Fai | [Good] [Excelient]

O(n log n):

An algorithm is said to

have a quasilinear time
. complexity when each

operation in the input

data have a logarithm

time complexity.

Elements

Check this out: https://www.bigocheatsheet.com/

LUISS -r

10


https://www.bigocheatsheet.com/

Operations

LUISS

i

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
[Forri1e] [5ad] [Fatr [Good [ExceTEend

merge sort or linear
algorithm + binary

_ search for each
element

Elements

Check this out: https://www.bigocheatsheet.com/

O(n log n) example:

11


https://www.bigocheatsheet.com/

Operations

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart

Om’):

An algorithm is said to
have a quadratic time
complexity when it
needs to perform a
linear time operation
for each value in the
input data

Elements

LUISS aF Check this out: https://www.bigocheatsheet.com/

12


https://www.bigocheatsheet.com/

Operations

LUISS

i

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
(Bad] (Good | [Excellent]

O(n’) example:
~ explore a square matrix

Elements

Check this out: https://www.bigocheatsheet.com/

13


https://www.bigocheatsheet.com/

Operations

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
— (HorrtBLe] (ad] Fai | [Good] [Excelient]

O2").
~ An algorithm is said to
have an exponential
time complexity when
the growth doubles
with each addition to
the input data set.

Elements

Check this out: https://www.bigocheatsheet.com/

LUISS -r

14


https://www.bigocheatsheet.com/

Operations

LUISS

i

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
[Forri1e] [5ad] [Fatr [Good [ExceTEend

O(2") example:
~ fibonacci

Elements

Check this out: https://www.bigocheatsheet.com/

15


https://www.bigocheatsheet.com/

Operations

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
— (HorrtBLe] (ad] Fai | [Good] [Excelient]

O(n!):
~ An algorithm is said to
have a factorial time
complexity when it
grows in a factorial way
based on the size of
the input data

Elements

Check this out: https://www.bigocheatsheet.com/

LUISS Aar 16


https://www.bigocheatsheet.com/

Operations

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
— (HorrtBLe] (ad] Fai | [Good] [Excelient]

O(n!) example:
- compute all the
permutation of n
elements. Factorial
function grows very
rapidly. Just to
compare:

219=1024
10! = 3628800

Elements

Check this out: https://www.bigocheatsheet.com/

LUISS -r 17


https://www.bigocheatsheet.com/

Operations

Lab Lecture 3 — Asymptotic Notation

Big-O Complexity Chart
(HorrtBLe] (ad] Fai | [Good] [Excelient]

Fun fact:
Unfortunately a lot of
interesting problems
can be solved only
using algorithm that
runin O(n!) or O(2")

Elements

LUISS aF Check this out: https://www.bigocheatsheet.com/

18


https://www.bigocheatsheet.com/

Lab Lecture 3 — Sorting

Sorting Algorithms:
* Bubble Sort

* |nsertion Sort

e Quick Sort

LUISS



Lab Lecture 3 — Bubble Sort

General Idea:

Traverse a collection of elements moving from the

start to the end 3 6

Move the largest value toward the end using
pairwise comparisons and swapping

Check this out:
https://dfordeveloper.qithub.io/study-sorting/

LUISS r

20


https://dfordeveloper.github.io/study-sorting/

Bubble Sort takes an unordered collection and

makes it an ordered one.

Index:

Value:

Index:

Value:

LUISS

Lab Lecture 3 — Bubble Sort

0 1 2 3 4 5
77 42 35 12 101 S
0 1 2 3 4 5
S 12 35 42 77 101

Before applying bubble

sort

After applying
bubble sort

21



How does it work?

Index:

Value:

Index:

Value:

LUISS

Lab Lecture 3 — Bubble Sort

0 1 2 3 4 5
77 42 35 12 101 S
0 1 2 3 4 5
S 12 35 42 77 101

Before applying bubble

sort

After applying
bubble sort

22



First pass: Let’s Start!

Index:

Value:

Index:

Value:

LUISS

Lab Lecture 3 — Bubble Sort

0 1 2 3 4
77 42 35 12 101
0 1 2 3 4
77 42 35 12 101

Before applying bubble

sort

Algorithm applied

23



Lab Lecture 3 — Bubble Sort

First pass: check if index 0 and 1 must be swapped

Index: 0 1 2 3 4 5
Value: 77 42 35 1 2 1 01 5 E::tore applying bubble
Index: 0 1 2 3 4 5

Value: n 35 12 101 5 Algorithm applied

LUISS JrF 24




Lab Lecture 3 — Bubble Sort

First pass: Yes! because 77 > 42

Index: 0 1 2 3 4

Value: 77 42 35 12 101
/\

Index: 0 yi 2 3 4

Value: n 35 12 101

LUISS F ~

Before applying bubble

sort

Algorithm applied

25



Lab Lecture 3 — Bubble Sort

First pass: check if index 1 and 2 must be swapped

Index: 0 1 2 3 4 5
Value: 77 42 35 1 2 1 01 5 E::tore applying bubble
Index: 0 1 2 3 4 5

Value: | 42 12 101 5 Algorithm applied

LUISS JrF 26




First pass: Yes! Because 77 > 35

Index:

Value:

Index:

Value:

LUISS

Lab Lecture 3 — Bubble Sort

0 1 2 3 4

77 42 35 12 101
/\

0 1 2 3 4

Before applying bubble

sort

Algorithm applied

27



Lab Lecture 3 — Bubble Sort

First pass: check if index 2 and 3 must be swapped

Index: 0 1 2 3 4 5
Value: 77 42 35 1 2 1 01 5 E::tore applying bubble
Index: 0 1 2 3 4 5

Value: | 42 | 35 n 101 5 Algorithm applied

LUISS JrF 28




Lab Lecture 3 — Bubble Sort

First pass: Yes! Because 77 > 12

Index: 0 1 2 3 4 5
Value: 77 42 35 1 2 1 01 5 E::tore applying bubble
Index: 0 1 2 3 4 5

Value: | 42 | 35 n 101 5 Algorithm applied

LUISS F ~—7

29



Lab Lecture 3 — Bubble Sort

First pass: check if index 3 and 4 must be swapped

Index: 0 1 2 3 4 5
Value: 77 42 35 1 2 1 01 5 E::tore applying bubble
Index: 0 1 2 3 4 5

Value: | 42 | 35 | 12 m 5 Algorithm applied

LUISS JrF 30




Lab Lecture 3 — Bubble Sort

First pass: No! Because 77 < 105

Index: 0 1 2 3 4 5
Value: 77 42 35 1 2 1 01 5 E::tore applying bubble
Index: 0 1 2 3 4 5

Value: | 42 | 35 | 12 m 5 Algorithm applied

LUISS JrF 31




Lab Lecture 3 — Bubble Sort

First pass: check if index 4 and 5 must be swapped

Index:

Value:

Index:

Value:

LUISS

0 1 2 3 4 5
17 42 35 12 101 5 E::tore applying bubble
0 1 2 3 4 5
42 35 12 77 mnl Algorithm applied

32



First pass: Yes! because 101 >5

Index:

Value:

Index:

Value:

LUISS

Lab Lecture 3 — Bubble Sort

0 1 2 3 4 5
77 42 35 12 101 5 E::tore applying bubble
£ N
0 1 2 3 4 5
42 35 12 77 “ml Algorithm applied

\/

33



Lab Lecture 3 — Bubble Sort

Now, we need to repeat this process over and
over until the list is ordered!

Index: 0 1 2 3 4 5

Value: 42 35 12 77 5 101

LUISS



LUISS

Lab Lecture 3 — Naive Bubble Sort Pseudocode

Naive Bubble Sort (A Array)

for i in range(len(dA)) : <

for j in range(len(A) - 1): = g— 8—
if(A[J] > A[j+1]): o o
Swap (A[j], A[j+1]) g: o
endloop «¢ = 8
endloop ¢
Return A

Implementation: Please implement the pseudocode on the jupyter
notebook

i 35



Lab Lecture 3 — Bubble Sort

Exercise at home: Starting from the result of the first
pass complete the algorithm execution to get the correct

result
Index: 0 1 2 3 4 5
Value: 42 35 12 77 5 101

- Organize your workspace as follow:

Second pass:

Comparison 1: 42 > 35? Yes, Result: | 42 35 12 77 5 101
Etc...

. Third pass:

" Final pass:

LUISS



LUISS

i

Lab Lecture 3 — Naive Bubble Sort

Question:
Jd  Which is the computational complexity ?

37



LUISS

i

Lab Lecture 3 — Naive Bubble Sort

Question:

Jd  Which is the computational complexity ?
Answer:

d  The computational complexity is O(n’)

Exercise at home: formally prove the computational
complexity of O(n?)

38



LUISS

i

Lab Lecture 3 — Naive Bubble Sort

It seems like the naive version is a way too
naive!

Question:
d Can you came up with an idea to reduce the
amount of operations, just modifying the inner
for loop?

39



LUISS

Lab Lecture 3 — Improved Bubble Sort Pseudocode

Improved Bubble Sort(A Array)

for i in range(len(AdA)): <+

for j in range(len(dA) - i - 1): < 8_ g—
if (A[3] > A[F + 11): O o
Swap (A[3], A[J + 11) 5 g
endloop <« = o
endloop
Return A

Implementation: Please implement the pseudocode on the jupyter
notebook

W 40



LUISS

i

Lab Lecture 3 — Improved Bubble Sort

Questions:
d  Which is the computational complexity in this
case’?

41



LUISS

i

Lab Lecture 3 — Improved Bubble Sort

Questions:
d  Which is the computational complexity in this
case’?
Answer:
1 Asymptotically it is always the same! O(n?)

42



LUISS

i

Lab Lecture 3 — Improved Bubble Sort

It seems like even this version can be
improved!

Question:
d Can you came up with an idea to reduce the
amount of operations, just using a particular
exit condition?

43



Lab Lecture 3 — A further Improvement in Bubble Sort Pseudocode

LUISS

Flag Bubble Sort(A Array)
for i in range(len(A)) : <

swap flag = False
for j in range(len(d) - i - 1): €
if(A[J] > A[]J + 1]):

Q.

o

o

swap flag = True -

_ Q

Swap (A[j], A[J + 1]) g

endloop < -

if swap flag is False:
return A
endloop <«
Return A

Outer loop

i

44



LUISS

i

Lab Lecture 3 — Bubble Sort

Question:
1  Which is the best case?

d  What is the complexity in that case?

45



Lab Lecture 3 — Bubble Sort

Question:
1  Which is the best case?

d  What is the complexity in that case?
Index: 0 1 2 3 4

Value: 5 12 35 42 77

101

Answer: if the list is ordered, the complexity is O(n),

because we need just a single pass

LUISS




LUISS

i

Lab Lecture 3 — Bubble Sort

Question:
Jd  Which is the worst case?
d  What is the complexity in that case?

47



LUISS

Lab Lecture 3 — Bubble Sort

Question:
d  Which is the worst case?
d  What is the complexity in that case?

Index: 0 1 2 3 4 5

Value: 101 77 42 35 12 5

Answer: if the list is in reverse order, the complexity
is O(n’), because we need compare each element with
any other element within the list

i

48



LUISS

i

Lab Lecture 3 — Bubble Sort

Question:
Jd  Which is the average case?
d  What is the complexity in that case?

49



Lab Lecture 3 — Bubble Sort

Question:
Jd  Which is the average case?

d  What is the complexity in that case?
Index: 0 1 2 3 4 5

Value: | 35 5 42 101 12 77

Answer: in the average case the complexity is O(n°)

LUISS

50



LUISS

i

Lab Lecture 3 — Bubble Sort

Question:
Jd  What about the space complexity?

51



LUISS

i

Lab Lecture 3 — Bubble Sort

Question:
Jd  What about the space complexity?

Answer: in all the three versions of Bubble Sort the
space complexity is O(1).

Bubble sort requires only a fixed amount of extra
space for the flag, and the other variables.

It is an in-place sorting algorithm, which modifies the
original array's elements to sort the given array. It
doesn’t need extra space!

52



