
Lab – Mystery function
Algorithms A.Y. 2022/2023

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it

14 February 2023

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Lab Lecture 3 - Mystery function

2

Lab lecture 3 overview:
- We implement three

different algorithms to
compute a mysterious
number

- We compare their
performance (time and
memory)

- Q/A project

Lab Lecture 3 - Mystery function

3

What is this mysterious
function that we want to
implement?
Given a number x, we want to compute 2x

by relying on two recursive calls just as

we’ve seen with Fibonacci numbers.

❖ What is the base case?

❖ How do the recursive calls look like?

Lab Lecture 3 - Mystery function

4

Lab Lecture 3 - Mystery function

5

def mystery(x):
if x = 1 then return 2
return mystery(x-1) + mystery(x-1)

Lab Lecture 3 - Mystery function

6

def mystery(x):
if x = 1 then return 2
return mystery(x-1) + mystery(x-1)

because 20 = 1, we can stop one
recursive level before

Lab Lecture 3 - Mystery function

7

def mystery(x):
if x = 1 then return 2
return mystery(x-1) + mystery(x-1)

2 recursive calls

Lab Lecture 3 - Mystery function

8

Draw the call stack for x = 4
Given a number x, we want to compute 24 according to the pseudocode in the

previous slide.

❖ How many leaf nodes are there?

❖ How many internal nodes are there?

❖ What’s the relationship between the number of internal and leaf nodes?

Lab Lecture 3 - Mystery function

9

Mystery function – “call stack”

10

https://tree-visualizer.netlify.app/

https://tree-visualizer.netlify.app/

Mystery function – “call stack”

11

23 = 8 leaves

Mystery function – “call stack”

12

23-1 = 7 internal nodes

Mystery function – “call stack”

13

leaves = # internal nodes + 1

Mystery function – “call stack”

14

What’s the relationship between leaves and internal
nodes?
Given a number x, we have 2x-1 leaves and 2x-1 - 1 internal nodes (including the root

node)

We’ll see a cool demonstration for this in the next laboratory class

For now, “convince” yourselves visually that the above relation holds.

Lab Lecture 3 - Think about how to improve mystery

15

Lab Lecture 3 - Improved mystery function

16

def mystery(x):
if x = 1 then return 2
return mystery(x-1) + mystery(x-1)

why should we compute
the same thing twice?

Lab Lecture 3 - Mystery function

17

def mystery(x):
if x = 1 then return 2
return 2 * mystery(x-1)

just multiply it by two

What’s the running time of
this function now?

Is it faster than the
non-improved version?

Mystery function with one recursive call

18

The red lines depict the
path that the improved
mystery takes

The rest of the call
stack is ignored

Mystery function with one recursive call

19

We have a function that
we can easily translate
into a for loop

