Luiss
Libera Universita Internazionale degli Studi Sociali Guido Carli

Algorithms A.Y. 2022/2023
Lab — Mystery function

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@lIuiss.it

14 February 2023

— P
LU I S S G]““r Dipartimento di Impresa e Management IIII”

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Lab Lecture 3 - Mystery function

Lab lecture 3 overview:

- We implement three
different algorithms to
compute a mysterious
number

- We compare their
performance (time and
memory)

- QJ/A project

LUISS r

Lab Lecture 3 - Mystery function

What is this mysterious
function that we want to
implement?

Given a number x, we want to compute 2*

by relying on two recursive calls just as
we’ve seen with Fibonacci numbers.

<* Whatis the base case?
** How do the recursive calls look like?

LUISS r

VLR L 2
VETE RV L
.8

5

3

2

1

Lab Lecture 3 - Mystery function

TICK TOCK /ﬁ P

LUISS r

Lab Lecture 3 - Mystery function

def mystery(x):
if x = 1 then return 2
return mystery(x-1) + mystery(x-1)

LUISS

Lab Lecture 3 - Mystery function

def mystery(x):
if x = 1 then return 2
return mystery(x-1) + mystery(x-1)

LUISS

Lab Lecture 3 - Mystery function

def mystery(x):
if x = 1 then return 2

returnystery(x-1) + @ystery(x-1

2 recursive calls

LUISS

Lab Lecture 3 - Mystery function

Draw the call stack for x =4

Given a number x, we want to compute 2* according to the pseudocode in the
previous slide.

** How many leaf nodes are there?
¢ How many internal nodes are there?
** What's the relationship between the number of internal and leaf nodes?

LUISS

Lab Lecture 3 - Mystery function

TICK TOCK /ﬁ P

LUISS r

Mystery function — “call stack”

https://tree-visualizer.netlify.app/

LUISS r 10

https://tree-visualizer.netlify.app/

Mystery function — “call stack”

OO OO OO,

23 = 8 leaves

LUISS r

Mystery function — “call stack”

23-1 = 7 internal nodes

& 2 & &
6 006 00 006

LUISS r 12

Mystery function — “call stack”

AR

7 7 7
OO o o OO O O

internal nodes + 1

LUISS r 13

Mystery function — “call stack”

What's the relationship between leaves and internal
nodes?

Given a number x, we have 2¥! leaves and 2! - 1 internal nodes (including the root
node)

We'll see a cool demonstration for this in the next laboratory class

For now, “convince” yourselves visually that the above relation holds.

LUISS r

14

LUISS

Lab Lecture 3 - Think about how to improve mystery

TICK TOCK /ﬁ P

i

15

Lab Lecture 3 - Improved mystery function

def mystery(x):
if x = 1 then return 2
returnystery(x-1) + @ystery(x-1

why should we compute
the same thing twice?

LUISS r

16

Lab Lecture 3 - Mystery function

def mystery(x):
if x = 1 then return 2
return ystery(x-1)

just multiply it by two

LUISS

What's the running time of
this function now?

Is it faster than the
non-improved version?

17

Mystery function with one recursive call

The red lines depict the 0
path that the improved
mystery takes

‘ex * ‘et Qe

LUISS r

The rest of the call
stack is ignored

18

Mystery function with one recursive call

We have a function that 0
we can easily translate
into a for loop

(- o e'
O o< s«x¢ OIS

LUISS r

Qe

19

