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Lab lecture 3 overview:
- We implement three 

different algorithms to 
compute a mysterious 
number

- We compare their 
performance (time and 
memory)

- Q/A project
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What is this mysterious 
function that we want to 
implement?
Given a number x, we want to compute 2x 

by relying on two recursive calls just as 

we’ve seen with Fibonacci numbers.

❖ What is the base case?

❖ How do the recursive calls look like?
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def mystery(x):
if x = 1 then return 2
return mystery(x-1) + mystery(x-1)
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def mystery(x):
if x = 1 then return 2
return mystery(x-1) + mystery(x-1)

because 20 = 1, we can stop one 
recursive level before
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def mystery(x):
if x = 1 then return 2
return mystery(x-1) + mystery(x-1)

2 recursive calls
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Draw the call stack for x = 4
Given a number x, we want to compute 24 according to the pseudocode in the 

previous slide.

❖ How many leaf nodes are there?

❖ How many internal nodes are there?

❖ What’s the relationship between the number of internal and leaf nodes?
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https://tree-visualizer.netlify.app/

https://tree-visualizer.netlify.app/
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23 = 8 leaves
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23-1 = 7 internal nodes
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# leaves = # internal nodes + 1
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What’s the relationship between leaves and internal 
nodes?
Given a number x, we have 2x-1 leaves and 2x-1 - 1 internal nodes (including the root 

node)

We’ll see a cool demonstration for this in the next laboratory class

For now, “convince” yourselves visually that the above relation holds.
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def mystery(x):
if x = 1 then return 2
return mystery(x-1) + mystery(x-1)

why should we compute 
the same thing twice?
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def mystery(x):
if x = 1 then return 2
return 2 * mystery(x-1)

just multiply it by two

What’s the running time of 
this function now?

Is it faster than the 
non-improved version?
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The red lines depict the 
path that the improved 
mystery takes

The rest of the call 
stack is ignored
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We have a function that 
we can easily translate 
into a for loop


