Luiss Libera Università Internazionale degli Studi Sociali Guido Carli

Algorithms A.Y. 2022/2023

Lab – Fibonacci Series

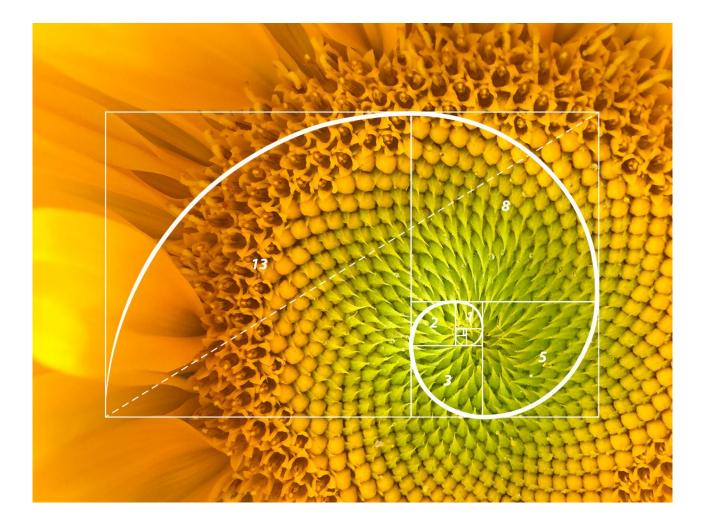
Irene Finocchi, Flavio Giorgi, Bardh Prenkaj finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©

10 February 2023

courtesy of: Andrea Coletta

Lab lecture 2 overview:

- We implement three different algorithms to compute Fibonacci number
- We compare their performance (time and memory)
- We solve Exercises
- Q/A project



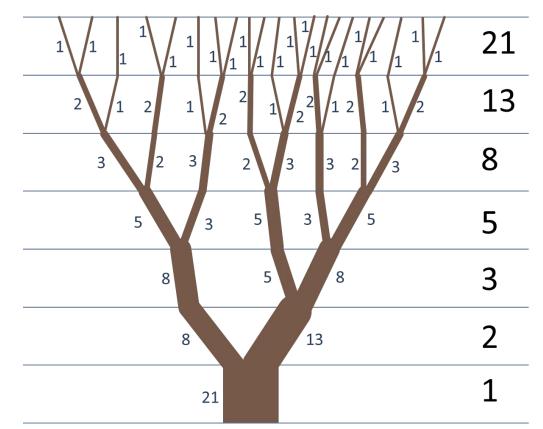
-

What is the Fibonacci sequence?

It is a sequence of **integer** numbers in which each number is the sum of the two preceding ones.

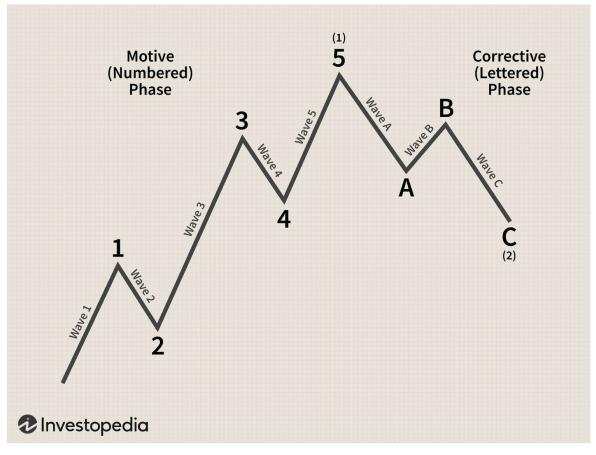
Fibonacci sequences appear often in nature:

- Branching in trees
- Arrangement of leaves on a stem

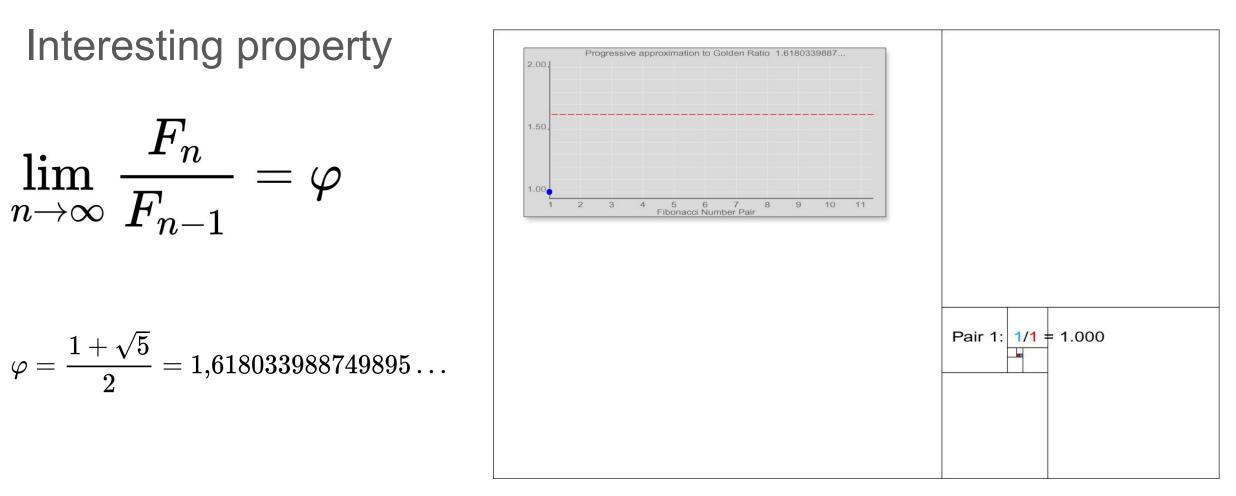


Fibonacci Applications

Fibonacci numbers are utilized to perform technical analysis on a stock's price action to forecast future trends in **Elliot Waves Theory**



Formal definition $F(n) = \begin{cases} 0 & if \ n = 0 \\ 1 & if \ n = 1 \\ F(n-1) + F(n-2) \ if \ n > 1 \end{cases}$ 21 3 2 10 5



algorithm fibonacci2(integer n) \rightarrow integer

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the *n*-th Fibonacci number.

algorithm fibonacci2(integer n) \rightarrow integer

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the *n*-th Fibonacci number.

Exercise: Draw a tree representing the recursive calls to the function *fibonacci2* with n=6

algorithm	fibonacci2	$(integer \ n)$	$\rightarrow integer$
-----------	------------	-----------------	-----------------------

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the *n*-th Fibonacci number.

F(6)

algorithm	fibonacci2	$(integer \ n)$	$\rightarrow integer$
-----------	------------	-----------------	-----------------------

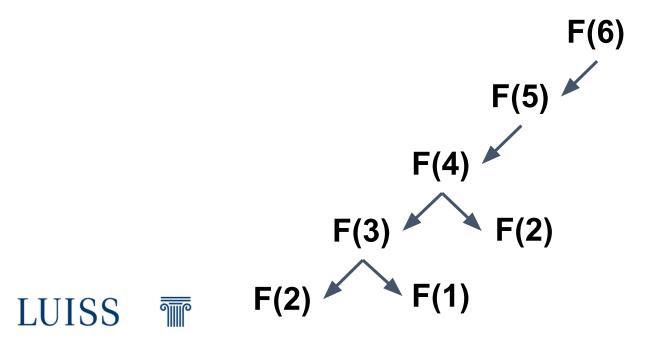
- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the *n*-th Fibonacci number.

algorithm	fibonacci2	$(integer \ n)$	$\rightarrow integer$
-----------	------------	-----------------	-----------------------

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the *n*-th Fibonacci number.



```
algorithm fibonacci2(integer n) \rightarrow integer
```

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the n-th Fibonacci number.

Question: How many recursive call the algorithm does approximately?


```
algorithm fibonacci2(integer n) \rightarrow integer
```

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the n-th Fibonacci number.

Question: How many recursive call the algorithm does approximately? **Answer**: $O(2^n)$


```
algorithm fibonacci2(integer n) \rightarrow integer
```

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the *n*-th Fibonacci number.

Question: How many recursive call the algorithm does approximately? **Answer**: $O(2^n)$ **Question**: Can we prove it?

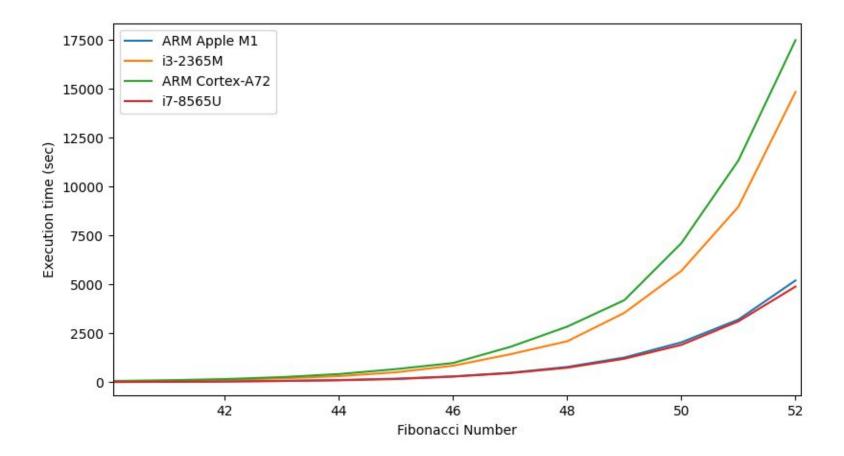

```
algorithm fibonacci2(integer n) \rightarrow integer
```

- 1. **if** $(n \le 2)$ then return 1
- 2. else return fibonacci2(n-1) + fibonacci2(n-2)

Figure 1.4 Algorithm fibonacci2 to compute the *n*-th Fibonacci number.

Question: How many recursive call the algorithm does approximately? Answer: $O(2^n)$ Question: Can we prove it? Answer: YES!

Fibonacci – Execution Time of *Fibonacci2*



Fibonacci – An iterative solution

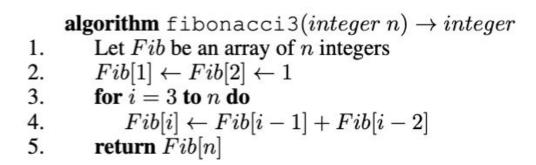
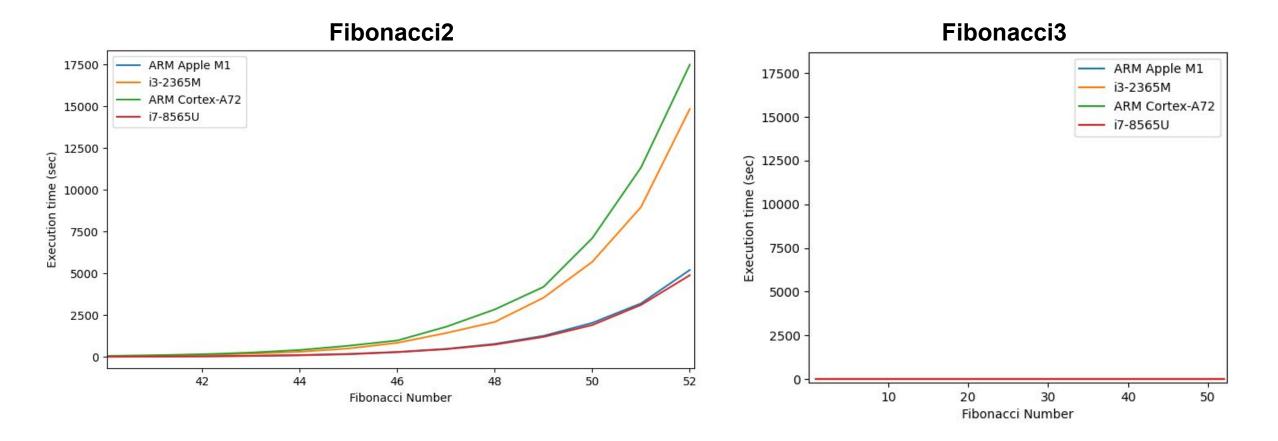
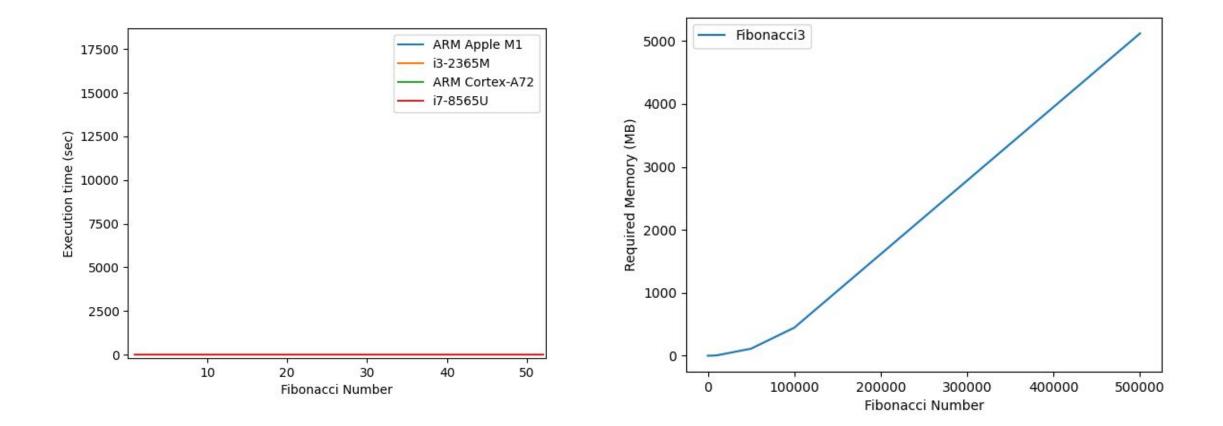


Figure 1.6 Algorithm fibonacci3 to compute the *n*-th Fibonacci number.

Fibonacci – Execution Time: A comparison



Fibonacci3 - Execution time and memory required



LUISS

T

Fibonacci – A memory efficient solution

```
algorithm fibonacci4(integer n) \rightarrow integer

1. a \leftarrow 1, b \leftarrow 1

2. for i = 3 to n do

3. c \leftarrow a + b

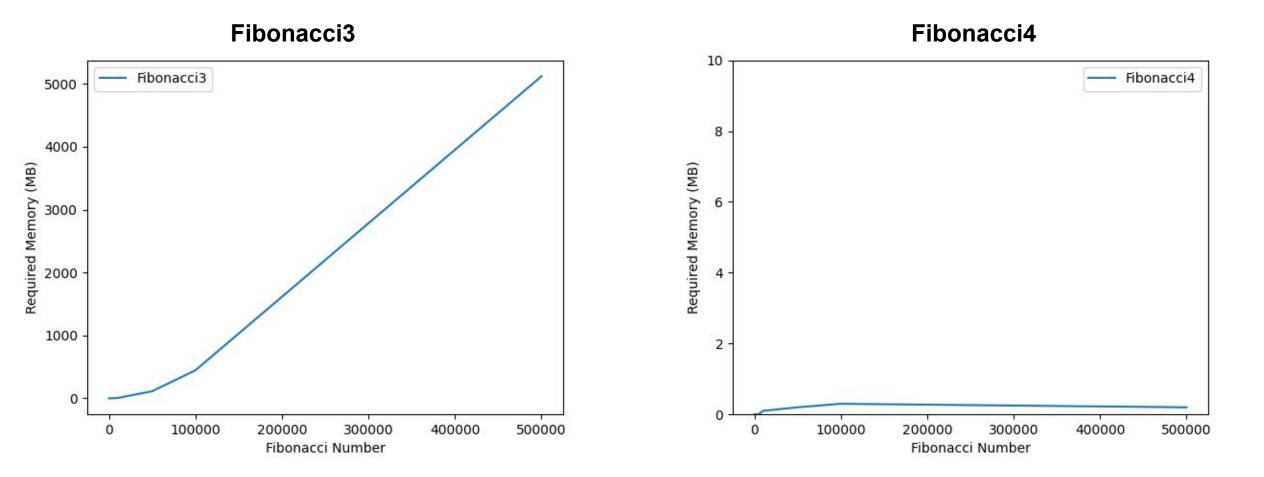
4. a \leftarrow b

5. b \leftarrow c

6. return b
```

Figure 1.8 Algorithm fibonacci4 to compute the *n*-th Fibonacci number.

Fibonacci - Memory Usage



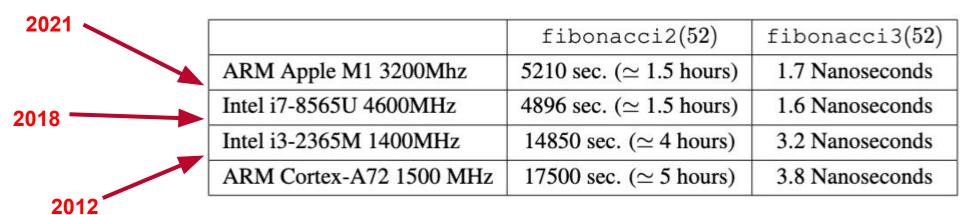


Table 1: Running time for a Python implementation of *fibonacci2 and fibonacci3*

2001 Per		fibonacci2(58)	fibonacci3(58)
	Pentium IV 1700MHz	15820 sec. (\simeq 4 hours)	0.7 Nanoseconds
	Pentium III 450MHz	43518 sec. (\simeq 12 hours)	2.4 Nanoseconds
1999	PowerPC G4 500MHz	58321 sec. ($\simeq 16$ hours)	2.8 Nanoseconds

Why the Intel i3 architecture, just to compute *fibonacci(52)*, needs the same time of an older architecture (*Pentium IV*) to compute *fibonacci(58)*?

2021		fibonacci2 (52)	fibonacci3 (52)
	ARM Apple M1 3200Mhz	5210 sec. ($\simeq 1.5$ hours)	1.7 Nanoseconds
2018	Intel i7-8565U 4600MHz	4896 sec. ($\simeq 1.5$ hours)	1.6 Nanoseconds
	Intel i3-2365M 1400MHz	14850 sec. (\simeq 4 hours)	3.2 Nanoseconds
	ARM Cortex-A72 1500 MHz	17500 sec. (\simeq 5 hours)	3.8 Nanoseconds
2012			

Table 1: Running time for a Python implementation of fibonacci2 and fibonacci3

2004		fibonacci2(58)	fibonacci3(58)
2001	Pentium IV 1700MHz	15820 sec. ($\simeq 4$ hours)	0.7 Nanoseconds
	Pentium III 450MHz	43518 sec. (\simeq 12 hours)	2.4 Nanoseconds
1999	PowerPC G4 500MHz	58321 sec. ($\simeq 16$ hours)	2.8 Nanoseconds
1999	(i)		

Why the Intel i3 architecture, just to compute *fibonacci(52)*, needs the same time of an older architecture (*Pentium IV*) to compute *fibonacci(58)*?

The algorithms in table 1 are implemented in **Python**, which we will see is **40 -70 times slower than C**!!

2021			
2021		fibonacci2 (52)	fibonacci3 (52)
	ARM Apple M1 3200Mhz	5210 sec. ($\simeq 1.5$ hours)	1.7 Nanoseconds
2018	Intel i7-8565U 4600MHz	4896 sec. ($\simeq 1.5$ hours)	1.6 Nanoseconds
	Intel i3-2365M 1400MHz	14850 sec. (\simeq 4 hours)	3.2 Nanoseconds
	ARM Cortex-A72 1500 MHz	17500 sec. (\simeq 5 hours)	3.8 Nanoseconds
2012		·	

Table 1: Running time for a Python implementation of fibonacci2 and fibonacci3

2001		fibonacci2 (58)	fibonacci3 (58)
	Pentium IV 1700MHz	15820 sec. (\simeq 4 hours)	0.7 Nanoseconds
	Pentium III 450MHz	43518 sec. (\simeq 12 hours)	2.4 Nanoseconds
1999	PowerPC G4 500MHz	58321 sec. ($\simeq 16$ hours)	2.8 Nanoseconds

Why the Intel i3 architecture, just to compute *fibonacci(52)*, needs the same time of an older architecture (*Pentium IV*) to compute *fibonacci(58)*?

Around **2008** processors companies stopped doubling the single cpu performance, and started focusing more on parallel executions!

2021		fibonacci2(52)	fibonacci3(52)
	ARM Apple M1 3200Mhz	5210 sec. ($\simeq 1.5$ hours)	1.7 Nanoseconds
2018	Intel i7-8565U 4600MHz	4896 sec. ($\simeq 1.5$ hours)	1.6 Nanoseconds
	Intel i3-2365M 1400MHz	14850 sec. (\simeq 4 hours)	3.2 Nanoseconds
	ARM Cortex-A72 1500 MHz	17500 sec. (\simeq 5 hours)	3.8 Nanoseconds
2012			

Table 1: Running time for a Python implementation of fibonacci2 and fibonacci3

2001		fibonacci2 (58)	fibonacci3 (58)
	Pentium IV 1700MHz	15820 sec. (\simeq 4 hours)	0.7 Nanoseconds
	Pentium III 450MHz	43518 sec. (\simeq 12 hours)	2.4 Nanoseconds
1999	PowerPC G4 500MHz	58321 sec. ($\simeq 16$ hours)	2.8 Nanoseconds

Memoization

What is memoization?

Memoization is an **optimization** technique for improving the performance of recursive algorithms.

It is based on the idea of **storing the results** of expensive function calls and returning the stored result when the same input occurs again.

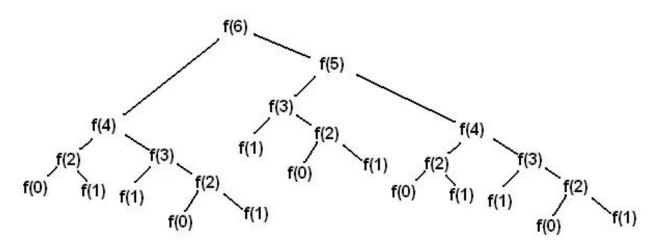


Figure 1: Functions calls to compute *F*(*6*) using *fibonacci2*, the recursive approach

Memoization

What is memoization?

Memoization is an **optimization** technique for improving the performance of recursive algorithms.

It is based on the idea of **storing the results** of expensive function calls and returning the stored result when the same input occurs again.

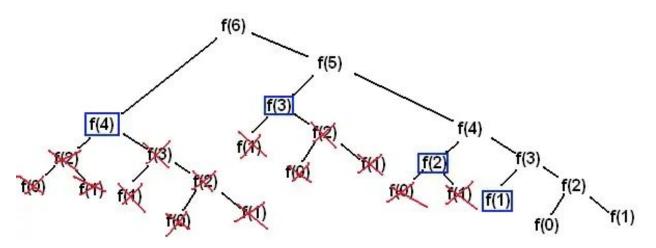


Figure 2: Functions calls to compute *F*(*6*) using *fibonacci2*, the recursive approach including **Memoization**

Memoization

Computational complexity for *fibonacci2* algorithm is 2ⁿ, thus, virtually impossible to use.

Using memoization we can lower a function's **time** cost in exchange for **space** cost

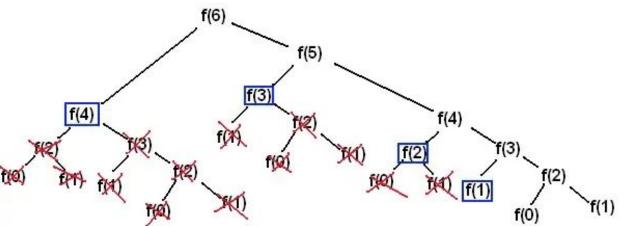


Figure 2: Functions calls to compute *F*(*6*) using *fibonacci2*, the recursive approach including **Memoization**

