
Lab – Fibonacci Series
Algorithms A.Y. 2022/2023

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©

10 February 2023 courtesy of: Andrea Coletta

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Lab Lecture 2 - Fibonacci

2

Lab lecture 2 overview:
- We implement three

different algorithms to
compute Fibonacci number

- We compare their
performance (time and
memory)

- We solve Exercises
- Q/A project

Lab Lecture 2 - Fibonacci

3

What is the Fibonacci
sequence?
It is a sequence of integer numbers in which

each number is the sum of the two

preceding ones.

Fibonacci sequences appear often in nature:

❖ Branching in trees

❖ Arrangement of leaves on a stem

Lab Lecture 2 - Fibonacci

4

Fibonacci Applications
Fibonacci numbers are utilized to perform

technical analysis on a stock’s price action to

forecast future trends in Elliot Waves Theory

Lab Lecture 2 - Fibonacci

5

Formal definition

F(n)

Lab Lecture 2 - Fibonacci

6

Interesting property

Fibonacci – A first recursive approach

7

Fibonacci – A first recursive approach

8

Exercise: Draw a tree representing the recursive
calls to the function fibonacci2 with n=6

Fibonacci – A first recursive approach

9

F(6)

Fibonacci – A first recursive approach

10

F(6)

F(5)

Fibonacci – A first recursive approach

11

F(6)

F(4)

F(5)

F(3)

F(2) F(1)

F(2)

Fibonacci – A first recursive approach

12

Question: How many recursive call the algorithm
does approximately?

Fibonacci – A first recursive approach

13

Question: How many recursive call the algorithm
does approximately?
Answer: O(2n)

Fibonacci – A first recursive approach

14

Question: How many recursive call the algorithm
does approximately?
Answer: O(2n)
Question: Can we prove it?

Fibonacci – A first recursive approach

15

Question: How many recursive call the algorithm
does approximately?
Answer: O(2n)
Question: Can we prove it?
Answer: YES!

Fibonacci – Execution Time of Fibonacci2

16

Fibonacci – An iterative solution

17

Fibonacci – Execution Time: A comparison

18

Fibonacci2 Fibonacci3

Fibonacci3 - Execution time and memory required

19

Fibonacci – A memory efficient solution

20

Fibonacci - Memory Usage

21

Fibonacci3 Fibonacci4

Fibonacci - Execution time

22

2021

2012

2001

1999

2018

Table 2: Running time for a C implementation of fibonacci2 and fibonacci3

Table 1: Running time for a Python implementation of fibonacci2 and fibonacci3

Fibonacci - Execution time

23

Why the Intel i3 architecture, just to

compute fibonacci(52), needs the same

time of an older architecture (Pentium IV)

to compute fibonacci(58)?

Fibonacci - Execution time

24

Why the Intel i3 architecture, just to

compute fibonacci(52), needs the same

time of an older architecture (Pentium IV)

to compute fibonacci(58)?

The algorithms in table 1 are implemented

in Python, which we will see is 40 -70

times slower than C!!

Fibonacci - Execution time

25

Why the Intel i3 architecture, just to

compute fibonacci(52), needs the same

time of an older architecture (Pentium IV)

to compute fibonacci(58)?

Around 2008 processors companies

stopped doubling the single cpu

performance, and started focusing more

on parallel executions!

Memoization

26

What is memoization?
Memoization is an optimization technique
for improving the performance of recursive
algorithms.
It is based on the idea of storing the
results of expensive function calls and
returning the stored result when the same
input occurs again.

Figure 1: Functions calls to compute F(6) using fibonacci2, the
recursive approach

Memoization

27

What is memoization?
Memoization is an optimization technique
for improving the performance of recursive
algorithms.
It is based on the idea of storing the
results of expensive function calls and
returning the stored result when the same
input occurs again.

Figure 2: Functions calls to compute F(6) using fibonacci2, the
recursive approach including Memoization

Memoization

28

Computational complexity for fibonacci2
algorithm is 2n, thus, virtually impossible to
use.
Using memoization we can lower a function’s
time cost in exchange for space cost

Figure 2: Functions calls to compute F(6) using fibonacci2, the
recursive approach including Memoization

