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Lab lecture 2 overview:
- We implement three 

different algorithms to 
compute Fibonacci number

- We compare their 
performance (time and 
memory)

- We solve Exercises 
- Q/A project
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What is the Fibonacci 
sequence?
It is a sequence of integer numbers in which 

each number is the sum of the two 

preceding ones.

Fibonacci sequences appear often in nature:

❖ Branching in trees

❖ Arrangement of leaves on a stem
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Fibonacci Applications
Fibonacci numbers are utilized to perform 

technical analysis on a stock’s price action to 

forecast future trends in Elliot Waves Theory
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Formal definition

F(n)
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Interesting property
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Exercise: Draw a tree representing the recursive 
calls to the function fibonacci2  with n=6
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F(6)
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F(6)

F(5)
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Question: How many recursive call the algorithm 
does approximately?
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Question: How many recursive call the algorithm 
does approximately?
Answer: O(2n)
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Question: How many recursive call the algorithm 
does approximately?
Answer: O(2n)
Question: Can we prove it?
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Question: How many recursive call the algorithm 
does approximately?
Answer: O(2n)
Question: Can we prove it?
Answer: YES!
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Fibonacci2 Fibonacci3
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Fibonacci3 Fibonacci4



Fibonacci - Execution time

22

2021

2012

2001

1999

2018

Table 2: Running time for a C implementation of fibonacci2 and fibonacci3

Table 1: Running time for a Python  implementation of fibonacci2 and fibonacci3



Fibonacci - Execution time

23

Why the Intel i3 architecture, just to 

compute fibonacci(52), needs the same 

time of an older architecture (Pentium IV) 

to compute fibonacci(58)?
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Why the Intel i3 architecture, just to 

compute fibonacci(52), needs the same 

time of an older architecture (Pentium IV) 

to compute fibonacci(58)?

The algorithms in table 1 are implemented 

in Python, which we will see is 40 -70 

times slower than C!!
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Why the Intel i3 architecture, just to 

compute fibonacci(52), needs the same 

time of an older architecture (Pentium IV) 

to compute fibonacci(58)?

Around 2008 processors companies 

stopped doubling the single cpu 

performance, and started focusing more 

on parallel executions!
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What is memoization?
Memoization is an optimization technique
for improving the performance of recursive 
algorithms. 
It is based on the idea of storing the 
results of expensive function calls and 
returning the stored result when the same 
input occurs again. 

Figure 1: Functions calls to compute F(6) using  fibonacci2, the 
recursive approach



Memoization

27

What is memoization?
Memoization is an optimization technique
for improving the performance of recursive 
algorithms. 
It is based on the idea of storing the 
results of expensive function calls and 
returning the stored result when the same 
input occurs again. 

Figure 2: Functions calls to compute F(6) using fibonacci2, the 
recursive approach including Memoization
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Computational complexity for fibonacci2 
algorithm is 2n, thus, virtually impossible to 
use.
Using memoization we can lower a function’s 
time cost in exchange for space cost

Figure 2: Functions calls to compute F(6) using fibonacci2, the 
recursive approach including Memoization


