
Lab – Graphs exercises

Slide statica
Esempio di copertina con fondo bianco

Algorithms A.Y. 2022/2023

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©

2 May 2023

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Graphs Exercises

2

Given a non-direct Graph G=(V, E), a node v ∈ V and an integer k count how
many nodes are at a distance smaller or equal than k from the source node
v. Note that v is at distance 0 from itself!

Graphs Exercises

3

To solve the exercise we can exploit an algorithm used to explore graphs…

Graphs Exercises

4

To solve the exercise we can exploit an algorithm used to explore graphs…

The BFS algorithm

Graphs Exercises

5

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited

Graphs Exercises

6

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited

Queue initialization

Graphs Exercises

7

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited

Source node first element in the queue

Graphs Exercises

8

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited

Source node set as visited

Graphs Exercises

9

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited

While loop to explore all the nodes

Graphs Exercises

10

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited

Take the first node of the queue out

Graphs Exercises

11

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited

Explore all the neighborhoods of v

Graphs Exercises

12

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited

If the node has not been visited

Graphs Exercises

13

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited

Put it in the queue

Graphs Exercises

14

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited Mark it as visited

Graphs Exercises

15

Given a non-direct Graph G=(V, E), a node v ∈ V and an integer k count how
many nodes are at a distance smaller or equal than k from the source node
v. Note that v is at distance 0 from itself!

Graphs Exercises

16

Given a non-direct Graph G=(V, E), a node v ∈ V and an integer k count how
many nodes are at a distance smaller or equal than k from the source node
v. Note that v is at distance 0 from itself!

v

Graphs Exercises

17

Given a non-direct Graph G=(V, E), a node v ∈ V and an integer k count how
many nodes are at a distance smaller or equal than k from the source node
v. Note that v is at distance 0 from itself!

v

k = 2

Graphs Exercises

18

k = 2

Graphs Exercises

19

k = 2 6Level 0

Graphs Exercises

20

k = 2 6Level 0

4Level 1

Graphs Exercises

21

k = 2 6Level 0

4Level 1

3Level 2

Graphs Exercises

22

k = 2 6Level 0

4Level 1

3Level 2 5

Graphs Exercises

23

k = 2 6Level 0

4Level 1

3Level 2 5

The answer is?

Graphs Exercises

24

k = 2 6Level 0

4Level 1

3Level 2 5

The answer is? 4

Graphs Exercises

25

BFS (G, s)
 let Q be queue.
 Q.enqueue(s)
 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)
 mark w as visited

We have to modify the
pseudocode to make it works!
How can we do that?

Graphs Exercises

26

BFS (G, s)
 node_count = 1
 let Q be queue.
 Q.enqueue((s, 0))
 mark s as visited.

 while (Q is not empty)
 v, level = Q.dequeue()

if level > k
break

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue((w, level+1))
 mark w as visited
 node_count += 1

We have to modify the
pseudocode to make it works!
How can we do that?

Graphs Exercises

27

What about the BFS using the adjacency matrix?

Graphs Exercises

28

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

Build a list of length |V|
with every entry equal to
False

Graphs Exercises

29

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

Put the starting node in
the queue

Graphs Exercises

30

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

We set the list at the position
“start” equal to true

Graphs Exercises

31

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

Then we start exploring the
nodes in the queue

Graphs Exercises

32

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

We extract the first node in the
queue (in this case an integer)

Graphs Exercises

33

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

Then we delete the element

Graphs Exercises

34

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

For each node in the graph

Graphs Exercises

35

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

If the node i is adjacent to
the current node (vis)

Graphs Exercises

36

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

And it is not visited

Graphs Exercises

37

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

Append the node to the
queue

Graphs Exercises

38

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True Set the node “i” as visited

Graphs Exercises

39

def BFS(self, start):
 visited = [False] * self.v
 q = [start]
 visited[start] = True
 while q:
 vis = q[0]
 q.pop(0)
 for i in range(self.v):
 if (Graph.adj[vis][i] == 1 and

(not visited[i])):
 q.append(i)
 visited[i] = True

In this way we explore the
adjacency matrix

BFS

40

Complexity:

O(|E| + |V|)

What if the graph is a complete graph?

BFS

41

Complexity:

O(|E| + |V|)

What if the graph is a complete graph?

O(|V|2)

