Algorithms A.Y. 2022/2023

Lab - Graphs exercises

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©
2 May 2023

Dipartimento di Impresa e Management

Graphs Exercises

Given a non-direct Graph $G=(V, E)$, a node $\mathbf{v} \in V$ and an integer \mathbf{k} count how many nodes are at a distance smaller or equal than \mathbf{k} from the source node v. Note that v is at distance 0 from itself!

Graphs Exercises

To solve the exercise we can exploit an algorithm used to explore graphs...

Graphs Exercises

To solve the exercise we can exploit an algorithm used to explore graphs... The BFS algorithm

Graphs Exercises

BFS (G, s)

let Q be queue.
Q.enqueue(s)
mark s as visited.
while (Q is not empty)
v = Q.dequeue()
for all neighbours w of v in Graph G
if w is not visited

$$
\begin{aligned}
& \text { Q.enqueue(w) } \\
& \text { mark w as visited }
\end{aligned}
$$

Graphs Exercises

BFS (G, s)

let Q be queue.
Queue initialization
Q.enqueue(s)
mark s as visited.
while (Q is not empty)
v = Q.dequeue()
for all neighbours w of v in Graph G
if w is not visited

$$
\begin{aligned}
& \text { Q.enqueue(w) } \\
& \text { mark w as visited }
\end{aligned}
$$

Graphs Exercises

BFS (G, s)

let Q be queur.
Q.enqueue(s)

Source node first element in the queue
marks as visited.
while (Q is not empty)
v = Q.dequeue()
for all neighbours w of v in Graph G
if w is not visited

$$
\begin{aligned}
& \text { Q.enqueue(w) } \\
& \text { mark w as visited }
\end{aligned}
$$

Graphs Exercises

BFS (G, s)

let Q be queue.
Q-onqueure(s)
mark s as visited. - Source node set as visited
while (Q is not empty)
v = Q.dequeue()
for all neighbours w of v in Graph G
if w is not visited

$$
\begin{aligned}
& \text { Q.enqueue(w) } \\
& \text { mark w as visited }
\end{aligned}
$$

Graphs Exercises

BFS (G, s)

let Q be queue.
Q.enqueue(s)
mark s as visited.
while $(Q$ is not empty) \longleftarrow While loop to explore all the nodes
$\mathrm{v}=\mathrm{Q}$. dequeue()
for all neighbours w of v in Graph G
if w is not visited

$$
\begin{aligned}
& \text { Q.enqueue(w) } \\
& \text { mark w as visited }
\end{aligned}
$$

Graphs Exercises

BFS (G, s)

let Q be queue.
Q.enqueue(s)
mark s as visited.
while (Q is not empty)
$v=$ Q.dequeue () \longleftarrow Take the first node of the queue out for all neighbours w of v in Graph G
if w is not visited

$$
\begin{aligned}
& \text { Q.enqueue(w) } \\
& \text { mark w as visited }
\end{aligned}
$$

Graphs Exercises

BFS (G, s)

let Q be queue.
Q.enqueue(s)
mark s as visited.
while (Q is not empty)
v = Q.dequeue()
for all neighbours w of v in Graph G $<$ Explore all the neighborhoods of v if w is not visited

> Q.enqueue(w) mark w as visited

Graphs Exercises

BFS (G, s)

let Q be queue.
Q.enqueue(s)
mark s as visited.
while (Q is not empty)
v = Q.dequeue()
for all neighbours w of v in Graph G
if w is not visited - If the node has not been visited

> Q.enqueue(w) mark w as visited

Graphs Exercises

BFS (G, s)

let Q be queue.
Q.enqueue(s)
mark s as visited.
while (Q is not empty)
v = Q.dequeue()
for all neighbours w of v in Graph G
if w is not visited

Graphs Exercises

BFS (G, s)

let Q be queue.
Q.enqueue(s)
mark s as visited.
while (Q is not empty)
v = Q.dequeue()
for all neighbours w of v in Graph G
if w is not visited

mark w as visited \longleftarrow Mark it as visited

Graphs Exercises

Given a non-direct Graph $G=(V, E)$, a node $\mathbf{v} \in V$ and an integer \mathbf{k} count how many nodes are at a distance smaller or equal than \mathbf{k} from the source node v. Note that vis at distance 0 from itself!

Graphs Exercises

Given a non-direct Graph $G=(V, E)$, a node $\mathbf{v} \in V$ and an integer \mathbf{k} count how many nodes are at a distance smaller or equal than \mathbf{k} from the source node v. Note that vis at distance 0 from itself!

Graphs Exercises

Given a non-direct Graph $G=(V, E)$, a node $\mathbf{v} \in V$ and an integer \mathbf{k} count how many nodes are at a distance smaller or equal than \mathbf{k} from the source node v. Note that v is at distance 0 from itself!

$$
k=2
$$

Graphs Exercises

LUISS $\overline{\overline{m i n p}}$

Graphs Exercises

LUISS $\overline{\overline{W i n}}$

Graphs Exercises

LUISS $\overline{\overline{W i n}}$

Graphs Exercises

LUISS $\overline{\overline{m i n p}}$

Graphs Exercises

Graphs Exercises

The answer is?

Graphs Exercises

The answer is? 4

Graphs Exercises

BFS (G, s)

let Q be queue.
Q.enqueue(s)
mark s as visited.
while (Q is not empty)
v = Q.dequeue()
for all neighbours w of v in Graph G
if w is not visited

$$
\begin{aligned}
& \text { Q.enqueue(w) } \\
& \text { mark w as visited }
\end{aligned}
$$

We have to modify the pseudocode to make it works! How can we do that?

Graphs Exercises

BFS (G, s)

node count = 1
let $Q \bar{b} e$ queue.
Q.enqueue((s, 0))
mark s as visited.
while (Q is not empty)
v, level = Q.dequeue()
if level > k break
for all neighbours w of v in Graph G if w is not visited
Q.enqueue((w, level+1)) mark w as visited
node_count += 1

Graphs Exercises

What about the BFS using the adjacency matrix?

Graphs Exercises

def BFS(self, start):
visited $=$ [False] * self.v Build a list of length |V|
q = [start]
visited[start] = True with every entry equal to False
while q :

```
vis = q[0]
q.pop (0)
for i in range(self.v):
        if (Graph.adj[vis][i] == 1 and
                (not visited[i])) :
                q.append(i)
                visited[i] = True
```


Graphs Exercises

def BFS (self, start):

```
    visited = [False] * self.v
```

$q=$ [start]
visited[start] = True
Put the starting node in the queue while q :

```
vis = q[0]
q.pop (0)
for i in range(self.v):
        if (Graph.adj[vis][i] == 1 and
                (not visited[i])) :
                q.append(i)
                visited[i] = True
```


Graphs Exercises

```
def BFS(self, start):
    visited = [False] * self.v
    q=[start]
    visited[start] = True
    while q:
    vis=q[0]
    q.pop (0)
    for i in range(self.v):
        if (Graph.adj[vis][i] == 1 and
                (not visited[i])) :
                q.append(i)
                visited[i] = True
```


Graphs Exercises

```
def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
```

Then we start exploring the nodes in the queue

```
            vis=q[0]
    q.pop (0)
for i in range(self.v):
        if (Graph.adj[vis][i] == 1 and
                (not visited[i])) :
                q.append(i)
                visited[i] = True
```


Graphs Exercises

```
def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis}=q[0
q.pOp(0)
for i in range(self.v):
        if (Graph.adj[vis][i] == 1 and
                (not visited[i])) :
                q.append(i)
                visited[i] = True
```


Graphs Exercises

```
def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
```



```
    for i in range(self.v):
        if (Graph.adj[vis][i] == 1 and
                (not visited[i])) :
                q.append(i)
                visited[i] = True
```


Graphs Exercises

```
def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
    q.pop(0)
    for i in range(self.v).-For each node in the graph
    if (Graph.adj[vis][i] == 1 and
        (not visited[i])) :
                q.append(i)
                visited[i] = True
```


Graphs Exercises

```
def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
    vis = q[0]
q.pop(0)
for i in range(self.v):
        if (Graph.adj[vis][i] == 1 and
            (not vislted[l])):
                q.append(i)
                            If the node i is adjacent to
                visited[i] = True the current node (vis)
```


Graphs Exercises

```
def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
    vis = q[0]
    q.pop(0)
for i in range(self.v):
        if (Graph.adj[vis][i] == 1 and
        (not visited[i])):
            q.append(i) And it is not visited
            visited[i] = True
```


Graphs Exercises

```
def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
    vis = q[0]
q.pop (0)
for i in range(self.v):
        if (Graph.adj[vis][i] == 1 and
                (not visited[i])) :
            q.append(i)
                        visited[i] = True queue
```


Graphs Exercises

```
def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
    vis = q[0]
q.pop(0)
for i in range(self.v):
        if (Graph.adj[vis][i] == 1 and
                (not visited[i])):
                q.append(i)
```


Graphs Exercises

```
def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True In this way we explore the
    while q:
    vis = q[0]
    q.pop(0)
    for i in range(self.v)
        if (Graph.adj[vis][i] == 1 and
            (not visited[i])):
                q.append(i)
                visited[i] = True
```


BFS

Complexity:

$O(|E|+\mid V)$
What if the graph is a complete graph?

LUISS $\overline{\overline{i n i n}}$

BFS

Complexity:

$\boldsymbol{O}(|E|+\mid V)$
What if the graph is a complete graph?
$O\left(\| V^{2}\right)$

