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Given a non-direct Graph G=(V, E), a node v ∈ V and an integer k count how 
many nodes are at a distance smaller or equal than k from the source node 
v. Note that v is at distance 0 from itself!
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To solve the exercise we can exploit an algorithm used to explore graphs…
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To solve the exercise we can exploit an algorithm used to explore graphs…

The BFS algorithm
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited

Queue initialization
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited

Source node first element in the queue
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited

Source node set as visited
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited

While loop to explore all the nodes
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited

Take the first node of the queue out
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited

Explore all the neighborhoods of v
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited

If the node has not been visited
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited

Put it in the queue
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited Mark it as visited
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Given a non-direct Graph G=(V, E), a node v ∈ V and an integer k count how 
many nodes are at a distance smaller or equal than k from the source node 
v. Note that v is at distance 0 from itself!
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Given a non-direct Graph G=(V, E), a node v ∈ V and an integer k count how 
many nodes are at a distance smaller or equal than k from the source node 
v. Note that v is at distance 0 from itself!

v
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Given a non-direct Graph G=(V, E), a node v ∈ V and an integer k count how 
many nodes are at a distance smaller or equal than k from the source node 
v. Note that v is at distance 0 from itself!

v

k = 2
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k = 2
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k = 2 6Level 0
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k = 2 6Level 0

4Level 1
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k = 2 6Level 0

4Level 1

3Level 2
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k = 2 6Level 0

4Level 1

3Level 2 5
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k = 2 6Level 0

4Level 1

3Level 2 5

The answer is?
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k = 2 6Level 0

4Level 1

3Level 2 5

The answer is? 4
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BFS (G, s)              
      let Q be queue.
      Q.enqueue( s ) 
      mark s as visited.

      while ( Q is not empty)

           v  =  Q.dequeue( )

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( w )
                      mark w as visited

We have to modify the 
pseudocode to make it works! 
How can we do that?
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BFS (G, s)        
      node_count = 1
      let Q be queue.
      Q.enqueue( (s, 0) ) 
      mark s as visited.

      while ( Q is not empty)
           v, level  =  Q.dequeue( )

if level > k
break

          for all neighbours w of v in Graph G

               if w is not visited 

                       Q.enqueue( (w, level+1) )
                      mark w as visited
        node_count += 1

We have to modify the 
pseudocode to make it works! 
How can we do that?
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What about the BFS using the adjacency matrix?
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

Build a list of length |V| 
with every entry equal to 
False
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

Put the starting node in 
the queue
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

We set the list at the position 
“start” equal to true 
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

Then we start exploring the 
nodes in the queue
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

We extract the first node in the 
queue (in this case an integer)
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

Then we delete the element
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

For each node in the graph
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

If the node i is adjacent to 
the current node (vis)
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

And it is not visited
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

Append the node to the 
queue
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True Set the node “i” as visited
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def BFS(self, start):
    visited = [False] * self.v
    q = [start]
    visited[start] = True
    while q:
        vis = q[0]
        q.pop(0)
        for i in range(self.v):
            if (Graph.adj[vis][i] == 1 and 

(not visited[i])):
                    q.append(i)
                    visited[i] = True

In this way we explore the 
adjacency matrix



BFS

40

Complexity:

O(|E| + |V|)

What if the graph is a complete graph?
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Complexity:

O(|E| + |V|)

What if the graph is a complete graph?

O(|V|2)


