Luiss
Libera Universita Internazionale degli Studi Sociali Guido Carli

Algorithms A.Y. 2022/2023
Lab — Graphs and Shortest Path

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@Iuiss.it©

19 April 2023

— P
LU I S S G]““r Dipartimento di Impresa e Management IIII”

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Graphs

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E

instead is the set of all the edges.
L5,
pes
OO

LUISS

Graphs

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E

instead is the set of all the edges.
L5,
pes
7 OO

LUISS r

Graphs

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E

instead is the set of all the edges.
e O.e‘a
OO

Vertex
or node

LUISS

Graphs

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

LUISS

Graphs - Non Direct

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

LUISS

Graphs - Non Direct

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

. Opt (1)
V=1{6,4,5 1 2 3} .‘

E="7

LUISS

Graphs - Non Direct

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

. Opt (1)
V=1{6,4,5 1 2 3} .‘

E=1(6,4),(4,5),(5,1), (5, 2),
(2,1),(4,3), (3, 2)}

LUISS

Graphs - Direct

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

LUISS

Graphs - Direct

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

o OnS (1)
V={64,5,1,2,3]) .‘

E="7

LUISS

10

Graphs - Direct

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

. OnS (1)
V={64,5,1,2,3]) .‘

E=1{(6,4),(4,3),(4,5),(3, 2),
(5,2),(2,1), (5, 1)}
REMEMBER: if the graph is direct it means that for any node
u v €V if(u v) € Eitis possible that (v, u) ¢ E

LUISS

11

Graphs - Direct

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

. OnS (1)
V={64,5,1,2,3]) .‘

E=1{(6,4),(4,3),(4,5),(3,2),
(5,2),(2,1), (5, 1)}
REMEMBER: Thus (4, 6) # (6, 4)

LUISS

12

Graphs - How to represent a graph

There are many ways to represent a graph:

Adjacency matrix

1 .21 3 4| 5 | 6 @ e

LUISS

13

Graphs - How to represent a graph

There are many ways to represent a graph:

Adjacency matrix

4 0 0 1
5 1 1 0 1
6 0 0 0 1 0

LUISS

14

Graphs - How to represent a graph

There are many ways to represent a graph:
Adjacency matrix

1 2 3 4 5 6

-_—

(3 I N

o | = | o | o
o
-V

LUISS r

15

Graphs - How to represent a graph

There are many ways to represent a graph:

Adjacency matrix

The diagonal represents
— self-loops

LUISS r

16

Graphs - How to represent a graph

There are many ways to represent a graph:
Adjacency matrix

1 2 3 4 5 6

N
—_

0 1 0 Self-loop

S
o - o | O

LUISS r

Graphs - Weights

Given an undirected graph G(V, E) we can add weights on the edges

LUISS

18

Graphs - Path

Let’s suppose that we have multiple destination and that we want to know
which are the paths from a source location toward a destination that cost
the least amount of money.

Singapore _
Detroit Austin, Texas

Washington, DC
Seattle

Hong Kong San Francisco

LUISS

19

Graphs - Path

Let’s suppose that we have multiple destination and that we want to know
which are the paths from a source location toward a destination that cost
the least amount of money.

S ource Singapore Austin, Texas

Detroit
Washington, DC ’ e) Destination

Hong Kong San Francisco

LUISS

20

Graphs - Path

How can we do that?

Source Singapore Austin, Texas

Detroit

Washington, DC Destination
\

Hong Kong San Francisco

LUISS

21

Graphs - Path

How can we do that?

Dijkstra algorithm!

S ource Singapore Austin, Texas

Detroit

Washington, DC Destination
\

Hong Kong San Francisco

LUISS

22

Graphs - Dijkstra Algorithm

First of all we set all the distances to infinity for every node

o0 o0

Austin, Texas

(o @l Singapore
Detroit

Seattle

(0. @) Hong Kong San Francisco

LUISS r

23

Graphs - Dijkstra Algorithm

Starting from the source node (Here Singapore) we start changing the cost
to reach any given node

o0 o0

(o @ Singapore _
Detroit Austin, Texas

Seattle

(0. @) Hong Kong San Francisco

LUISS r

24

Graphs - Dijkstra Algorithm

Starting from the source node (Here Singapore) we start changing the cost
to reach any given node

oQ C
\ Singapore S Austin, Texas

Seattle

(0. @) Hong Kong San Francisco

LUISS r 25

Graphs - Dijkstra Algorithm

Reach Singapore from Singapore costs 0 Dollars!

LUISS

Singapore .
\ Detroit Austin, Texas

i

Seattle

Hong Kong San Francisco

26

Graphs - Dijkstra Algorithm

Reach Singapore from Singapore costs 0 Dollars! So we can change the cost
to zero.

o0 (0. @)
O Singapore Detroit Austin, Texas

Seattle

(0. @) Hong Kong San Francisco

LUISS r 27

Graphs - Dijkstra Algorithm

Now from here we have to explore the outgoing links from the current node.

(00 o0
Singapore .
O \ Detroit Austin, Texas

Seattle

(0. @) Hong Kong San Francisco

LUISS r 28

Graphs - Dijkstra Algorithm

For each node adjacent to the current node we have to ask 2 things: it has
been visited?

o0 (0. @)
O Singapore Detroit Austin, Texas

Seattle

(0. @) Hong Kong San Francisco

LUISS r 20

Graphs - Dijkstra Algorithm

For each node adjacent to the current node we have to ask 2 things: Is the
cost to reach that node from the current node lower than the current cost?

o0 (0. @)
O Singapore Detroit Austin, Texas

Seattle

(0. @) Hong Kong San Francisco

LUISS r 30

Graphs - Dijkstra Algorithm

First of all we go to the Hong Kong node. The current cost of this node is
infinity.

o0 (0. @)
O Singapore Detroit Austin, Texas

Seattle

(0. @) Hong Kong San Francisco

LUISS r 3

Graphs - Dijkstra Algorithm

To reach that node from Singapore we have to add the cost to reach
Singapore (0) and the cost of the link (300)

o0 (0. @)
O Singapore Detroit Austin, Texas

Seattle

(0. @) Hong Kong San Francisco

LUISS r 32

Since 0 + 300 =

0%

Graphs - Dijkstra Algorithm

300 < = then we change the cost of Hong Kong

o0 o0

Singapore _
Detroit Austin, Texas

$300 Seattle

300 \

LUISS r

Hong Kong San Francisco

33

Graphs - Dijkstra Algorithm
Same thing happens for Tokyo.

00 e
O \ Singapore

$300 Seattle

300 X Hong Kong San Francisco

LUISS r N

Graphs - Dijkstra Algorithm
We ask has Tokyo been visited? NO

00 e
O \ Singapore

$300 Seattle

300 X Hong Kong San Francisco

LUISS r .

Graphs - Dijkstra Algorithm

Is the cost of Tokyo smaller than the cost of Singapore plus the cost of the
link between the two nodes? NO! Because 0 + 500 <

o0 (0. @)
O Singapore Detroit Austin, Texas

$300 Seattle

300 X Hong Kong San Francisco

LUISS r 36

Graphs - Dijkstra Algorithm
We can change the cost of Tokyo to 500

oQ o0

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kong San Francisco

LUISS r

37

Graphs - Dijkstra Algorithm

Singapore has no other adjacent nodes so we can mark it as visited

oQ o0

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kong San Francisco

LUISS r

38

Graphs - Dijkstra Algorithm

Now we have to select the node among the adjacent nodes of Singapore
that has the smallest cost and it has not been visited yet
[0%0) o0

0 Singapore -
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kong San Francisco

LUISS r

39

Graphs - Dijkstra Algorithm

So neither Hong Kong nor Tokyo has been visited. We select Hong Kong as
next node to explore because of the cost.
[0%0) o0

0 Singapore -
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kong San Francisco

LUISS r

40

Graphs - Dijkstra Algorithm

We start exploring the adjacent nodes of Hong Kong (Tokyo and San
Francisco)
o0 o0

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kong San Francisco

LUISS r

41

Graphs - Dijkstra Algorithm

Starting with Tokyo we always ask the two questions.

LUISS

300

i

Singapore

Hong Kong

o0

Austin, Texas

0. @

Detroit

Washington, DC
Seattle

San Francisco

42

Graphs - Dijkstra Algorithm

Has Tokyo been visited? NO, Is the cost of Tokyo (500) smaller than the cost
of Hong Kong plus the cost from Hong Kong to Tokyo? NO! 500 < 300 + 250
[0%0) o0

0 Singapore .
Detroit Austin, Texas

Washington, DC

Seattle

3 O 0 Hong Kong San Francisco

LUISS r

43

Graphs - Dijkstra Algorithm

So we do not modify anything. We explore San Francisco and ask alway the
guestions: has San Francisco been visited? NO!
o0 o0

0 Singapore -
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kong San Francisco

LUISS r

44

Graphs - Dijkstra Algorithm

Is the cost of San Francisco smaller than the cost of Hong Kong (300) plus
the cost from Hong Kong to San Francisco (600)? Yes! 300 + 600 <
[0%0) o0

0 Singapore -
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kong San Francisco

LUISS r

45

Graphs - Dijkstra Algorithm

So we change the cost of San Francisco to 600 + 300 =900

oQ o0

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kong San Francisco
900

LUISS r

46

Graphs - Dijkstra Algorithm

Now Hong Kong has no more adjacent nodes, so we can set it as visited and
we go to the next adjacent nodes that has the lowest cost.
[0%0) o0

0 Singapore -
Detroit Austin, Texas

Washington, DC
Seattle

3 0 0 Hong Kong San Francisco
900

LUISS r

47

Graphs - Dijkstra Algorithm

This node is Tokyo. Now we start exploring the nodes directly linked with
Tokyo.
o0 o0

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong K‘/’“Q San Francisco
900
LUISS “F

48

Graphs - Dijkstra Algorithm

We start with Detroit. Again we ask always the same questions: has Detroit
been visited? NO!
o0 o0

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong K‘/’“Q San Francisco
900
LUISS “F

49

Graphs - Dijkstra Algorithm

Is the cost of Detroit smaller than the cost to reach Tokyo plus the cost to go
from Tokyo to Detroit? YES because 500 + 450 < «© so we change the cost
[0%0) o0

0 Singapore -
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong K‘?“Q San Francisco
900
LUISS “F

50

Graphs - Dijkstra Algorithm

Is the cost of Detroit smaller than the cost to reach Tokyo plus the cost to go
from Tokyo to Detroit? YES because 500 + 450 < «© so we change the cost

950 o0

0 Singapore -
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong K‘?“Q San Francisco
900
LUISS “F

51

Graphs - Dijkstra Algorithm

Now again we ask the same question for Washington and we can see that
the cost of Washington becomes 500 + 300 = 800

950 o0

0 Singapore _
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kéng San Francisco
900
LUISS “F

52

Graphs - Dijkstra Algorithm

Now again we ask the same question for Washington and we can see that
the cost of Washington becomes 500 + 300 = 800

950 o0

0 Singapore _
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kéng San Francisco
900
LUISS “F

53

Graphs - Dijkstra Algorithm

REMARK: as you can see Tokyo is linked with Singapore and Hong Kong but
we skip these nodes because they have been visited!
950 o0

0 Singapore _
Detroit Austin, Texas

Washington, DC

Seattle

3 O 0 Hong Kéng San Francisco
900
LUISS “F

54

Graphs - Dijkstra Algorithm

Now since Tokyo has no other adjacent nodes we can set it as visited and we
can select the adjacent node with the smallest cost.
950 o0

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kéng San Francisco
900
LUISS “F

95

Graphs - Dijkstra Algorithm

Now since Tokyo has no other adjacent nodes we can set it as visited and we
can select the adjacent node with the smallest cost.
950 o0

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kéng San Francisco
900
LUISS “F

56

Graphs - Dijkstra Algorithm

The node is Washington, and we start exploring the adjacent nodes. We
start from Austin. Again we ask the questions.
950 o0

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kéng San Francisco
900
LUISS “F

Y

Graphs - Dijkstra Algorithm

Has Austin been visited? NO!, is the cost of Austin lower than the cost of
Washington plus the cost of the link between Washington and Austin? YES
950 oQ

0 Singapore _
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kéng San Francisco
900
LUISS “F

58

Graphs - Dijkstra Algorithm

So we change the cost of Austin in 800 + 292 = 1092

LUISS

300

i

Singapore

Hong Kong

950

Detroit

San Francisco

900

1092

Seattle

59

Graphs - Dijkstra Algorithm

Same thing happen to Seattle. Please tell which is the cost of Seattle

950 1092

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 0 0 Hong Kong San Francisco
900
LUISS P

60

Graphs - Dijkstra Algorithm
The cost of Seattle is 800 + 277 = 1077
950 1092

0 Singapore
Detroit

3 0 0 Hong Kong San Francisco
900
LUISS

61

Graphs - Dijkstra Algorithm
We again explore San Francisco that has been explored BUT NOT MARKED

AS VISITED!
950 1092
0 S Raseers Detroit Austin, Texas
Washington, DC =
3 O 0 Hong Kong San Francisco

900

LUISS r

62

Graphs - Dijkstra Algorithm

Now we try to see if it is possible to reach San Francisco though Washington
spending less than passing from Hong Kong
950 1092

0 Singapore :
Detroit Austin, Texas

Washington, DC

Seattle

3 O 0 Hong Kéng San Francisco
900
LUISS “F

63

Graphs - Dijkstra Algorithm

We check if the cost of Washington plus the cost to go from Washington to
San Francisco is smaller than the current cot gif g%n Francisco.
950 0

0 Singapore :
Detroit Austin, Texas

Washington, DC
Seattle

3 O 0 Hong Kéng San Francisco
900
LUISS “F

64

Graphs - Dijkstra Algorithm
800 +337=1137 >900 so it is not convenient and we do not change

thi
VTS 950 1092

0 Singapore
Detroit

3 O 0 Hong K‘/’“Q San Francisco
900
LUISS P

65

Graphs - Dijkstra Algorithm

We set Washington as visited

950 1092

0 Singapore .
Detroit Austin, Texas

Washington, DC)

Seattle

3 0 0 Hong Kong San Francisco

LUISS r

66

Graphs - Dijkstra Algorithm

We choose the node with the smallest cost that is San Francisco. Both Hong
Kong and Washington have been visited so w$ 555) them.
950 0

0 Singapore :
Detroit Austin, Texas

Washington, DC)
Seattle

3 O 0 Hong K‘/’“Q San Francisco
900
LUISS “F

67

Graphs - Dijkstra Algorithm

We check is it is possible to reach Seattle through San Francisco spending

less than passing through Washington.
Passing throls 95 1092

0 Singapore
Detroit

3 O 0 Hong K‘/’“Q San Francisco
900
LUISS “F

68

Graphs - Dijkstra Algorithm
The cost of Seattle is 1077 <900 + 218 = 1118 so we do not change
anything.
950 1092

0 Singapore
Detroit

3 O 0 Hong Kéng San Francisco
900
LUISS P

69

Graphs - Dijkstra Algorithm

Now we check if it is possible to reach Austin from San Francisco spending
less than passing through Washington.
P g g 9580 1092

0 Singapore :
Detroit Austin, Texas

Washington, DC)

Seattle

3 O 0 Hong K‘/’“Q San Francisco
900
LUISS “F

70

Graphs - Dijkstra Algorithm

1092 <900 + 297 = 1197 So even here we do not change anything. We set
San Francisco as visited
950 1092

0 Singapore
Detroit

3 O 0 Hong K‘/’“Q San Francisco
900
LUISS P

71

Graphs - Dijkstra Algorithm

1092 <900 + 297 = 1197 So even here we do not change anything. We set
San Francisco as visited
950 1092

0 Singapore
Detroit

3 O 0 Hong Kéng San Francisco
900
LUISS P

72

Graphs - Dijkstra Algorithm

Now we go to Detroit and we try to see if reaching Austin through Detroit
cost less than reaching it through Washingtoq

0 Singapore :
Detroit Austin, Texas

Washington, DC)
Seattle

3 O 0 Hong K‘/’“Q San Francisco
900
LUISS P

73

Graphs - Dijkstra Algorithm
1092 > 950 + 50 = 1000 So YES it cost less to reach Austin from Detroit!!
950 1092

0 Singapore
Detroit

3 O 0 Hong Kéng San Francisco
900
LUISS P

74

Graphs - Dijkstra Algorithm

Now we can change the cost of Austin to 1000

LUISS

300

i

Singapore

Hong Kong

950 1000

Detroit Austin, Texas

Washington, DC)

Seattle

San Francisco

900

75

Graphs - Dijkstra Algorithm

Since Tokyo has been visited we set Detroit has visited and we go to Austin

950 1000

0 Singapore K .
Detroit\ Austin, Texas

Washington, DC)

Seattle

3 0 0 Hong Kong San Francisco
900
LUISS P

76

Graphs - Dijkstra Algorithm

Since every adjacent nodes of Austin has been visited we set it has visited!

950 1000

0 Singapore K .
Detroit\ Austin, Texas

Washington, DC)
Seattle

3 0 0 Hong Kong San Francisco
900
LUISS

77

Graphs - Dijkstra Algorithm

Since every adjacent nodes of Austin has been visited we set it has visited!

950 1000

0 Singapore /De;roﬂ\ Austin, Texas)

Washington, DC)
Seattle

3 0 0 Hong Kong San Francisco
900
LUISS

78

Graphs - Dijkstra Algorithm

Same thing happen to Seattle!

LUISS

300

i

Singapore

Hong Kong

950 1000

Detroit

/Seattle

o

San Francisco

900

79

Finished!

LUISS

300

i

Singapore

Hong Kong

Graphs - Dijkstra Algorithm

950 1000

Detroit Austin, Texas)

/Seattle

o

San Francisco

80

Graphs - Dijkstra Algorithm

We can draw the paths from Singapore to any other country that have the

least t
east COS 00 1000
0 i Detroit
/Seattle
3 0 0 Hong Kong San Francisco

900

LUISS r

81

Graphs - Dijkstra Algorithm

Pseudocode

1 function Dijkstra(Graph, source):

T . 2

Inltlallzatlon for each vertex v in Graph.Vertices:
4 dist[v] « INFINITY
5 prev[v] « UNDEFINED
6 add v to Q
dist[source] « 0

8
9 while Q is not empty:
10 u « vertex in Q with min dist[u]
11 remove u from Q
12
13 for each neighbor v of u still in Q:
14 alt « dist[u] + Graph.Edges(u, v)
15 if alt < dist[v]:
16 dist[v] « alt
17 previv] « u
18
19 return dist[], prevl(]

LUISS r 82

Graphs - Dijkstra Algorithm

Pseudocode
function Dijkstra(Graph, source):

for each vertex v in Graph.Vertices:
dist[v] « INFINITY
prev[v] « UNDEFINED
add v to Q

dist[source] < @

Ooo~NOULTESE WN -

while Q is not empty:
U « vertex in Q with min dist[u
remove u from Q

the process

we have done\;

13 for each neighbor v of u still in Q:

in the alt « dist[u] + Graph.Edges(u, v)
if alt < dist[v]:
example dist[v] « alt
previv] « u
o return dist[], prevI]
LUISS

83

Graphs - Dijkstra Algorithm
Complexity:

If the queue is implemented using binary heaps the complexity

is: &(E| + [V log [V))

If the queue is implemented using fibonacci heaps the
complexity is: O(|E| + |V] log |V))

LUISS

84

