
Lab – Graphs and Shortest Path

Slide statica
Esempio di copertina con fondo bianco

Algorithms A.Y. 2022/2023

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©

19 April 2023

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Graphs

2

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

Graphs

3

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

Graph

Graphs

4

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

Vertex
or node

Graphs

5

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

Edge

Graphs - Non Direct

6

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

G =
V = ?
E = ?

Graphs - Non Direct

7

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

G =
V = {6, 4, 5, 1, 2, 3}
E = ?

Graphs - Non Direct

8

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

G =
V = {6, 4, 5, 1, 2, 3}
E = {(6, 4), (4, 5), (5, 1), (5, 2),

 (2, 1), (4, 3), (3, 2)}

Graphs - Direct

9

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

G =
V = ?
E = ?

Graphs - Direct

10

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

G =
V = {6, 4, 5, 1, 2, 3}
E = ?

Graphs - Direct

11

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

G =
V = {6, 4, 5, 1, 2, 3}
E = {(6, 4), (4, 3), (4, 5), (3, 2),

 (5, 2), (2, 1), (5, 1)}
REMEMBER: if the graph is direct it means that for any node
u, v ∈ V, if (u, v) ∈ E it is possible that (v, u) ∉ E

Graphs - Direct

12

A Graph is a pair G=(V, E) where V is the set containing all the vertices, E
instead is the set of all the edges.

G =
V = {6, 4, 5, 1, 2, 3}
E = {(6, 4), (4, 3), (4, 5), (3, 2),

 (5, 2), (2, 1), (5, 1)}
REMEMBER: Thus (4, 6) ≠ (6, 4)

Graphs - How to represent a graph

13

There are many ways to represent a graph:

Adjacency matrix

1 2 3 4 5 6

1

2

3

4

5

6

Graphs - How to represent a graph

14

There are many ways to represent a graph:

Adjacency matrix

1 2 3 4 5 6

1 -

2 1 -

3 0 1 -

4 0 0 1 -

5 1 1 0 1 -

6 0 0 0 1 0 -

Graphs - How to represent a graph

15

There are many ways to represent a graph:

Adjacency matrix

1 2 3 4 5 6

1 -

2 1 -

3 0 1 -

4 0 0 1 -

5 1 1 0 1 -

6 0 0 0 1 0 -

?

Graphs - How to represent a graph

16

There are many ways to represent a graph:

Adjacency matrix

1 2 3 4 5 6

1 -

2 1 -

3 0 1 -

4 0 0 1 -

5 1 1 0 1 -

6 0 0 0 1 0 -

The diagonal represents
self-loops

Graphs - How to represent a graph

17

There are many ways to represent a graph:

Adjacency matrix

1 2 3 4 5 6

1 0

2 1 0

3 0 1 0

4 0 0 1 0

5 1 1 0 1 0

6 0 0 0 1 0 1

Self-loop

Graphs - Weights

18

Given an undirected graph G(V, E) we can add weights on the edges

1 2

4 7

5

5

1

Graphs - Path

19

Let’s suppose that we have multiple destination and that we want to know
which are the paths from a source location toward a destination that cost
the least amount of money.

Graphs - Path

20

Let’s suppose that we have multiple destination and that we want to know
which are the paths from a source location toward a destination that cost
the least amount of money.

Source

Destination

Graphs - Path

21

How can we do that?

Source

Destination

Graphs - Path

22

How can we do that?

Dijkstra algorithm!

Source

Destination

Graphs - Dijkstra Algorithm

23

First of all we set all the distances to infinity for every node

∞

∞
∞

∞ ∞
∞

∞ ∞

Graphs - Dijkstra Algorithm

24

Starting from the source node (Here Singapore) we start changing the cost
to reach any given node

∞

∞
∞

∞ ∞
∞

∞ ∞

Graphs - Dijkstra Algorithm

25

Starting from the source node (Here Singapore) we start changing the cost
to reach any given node

∞

∞
∞

∞ ∞
∞

∞ ∞

Graphs - Dijkstra Algorithm

26

Reach Singapore from Singapore costs 0 Dollars!

∞

∞
∞

∞ ∞
∞

∞ ∞

Graphs - Dijkstra Algorithm

27

Reach Singapore from Singapore costs 0 Dollars! So we can change the cost
to zero.

∞

∞
∞

∞ ∞
∞

∞ ∞

0

Graphs - Dijkstra Algorithm

28

Now from here we have to explore the outgoing links from the current node.

∞

∞
∞

∞ ∞
∞

∞ ∞

0

Graphs - Dijkstra Algorithm

29

For each node adjacent to the current node we have to ask 2 things: it has
been visited?

∞

∞
∞

∞ ∞
∞

∞ ∞

0

Graphs - Dijkstra Algorithm

30

For each node adjacent to the current node we have to ask 2 things: Is the
cost to reach that node from the current node lower than the current cost?

∞

∞
∞

∞ ∞
∞

∞ ∞

0

Graphs - Dijkstra Algorithm

31

First of all we go to the Hong Kong node. The current cost of this node is
infinity.

∞

∞
∞

∞ ∞
∞

∞ ∞

0

Graphs - Dijkstra Algorithm

32

To reach that node from Singapore we have to add the cost to reach
Singapore (0) and the cost of the link (300)

∞

∞
∞

∞ ∞
∞

∞ ∞

0

Graphs - Dijkstra Algorithm

33

Since 0 + 300 = 300 < ∞ then we change the cost of Hong Kong

∞

∞
∞

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

34

Same thing happens for Tokyo.

∞

∞
∞

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

35

We ask has Tokyo been visited? NO

∞

∞
∞

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

36

Is the cost of Tokyo smaller than the cost of Singapore plus the cost of the
link between the two nodes? NO! Because 0 + 500 < ∞

∞

∞
∞

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

37

We can change the cost of Tokyo to 500

500

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

38

Singapore has no other adjacent nodes so we can mark it as visited

500

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

39

Now we have to select the node among the adjacent nodes of Singapore
that has the smallest cost and it has not been visited yet

500

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

40

So neither Hong Kong nor Tokyo has been visited. We select Hong Kong as
next node to explore because of the cost.

500

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

41

We start exploring the adjacent nodes of Hong Kong (Tokyo and San
Francisco)

500

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

42

Starting with Tokyo we always ask the two questions.

500

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

43

Has Tokyo been visited? NO, Is the cost of Tokyo (500) smaller than the cost
of Hong Kong plus the cost from Hong Kong to Tokyo? NO! 500 < 300 + 250

500

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

44

So we do not modify anything. We explore San Francisco and ask alway the
questions: has San Francisco been visited? NO!

500

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

45

Is the cost of San Francisco smaller than the cost of Hong Kong (300) plus
the cost from Hong Kong to San Francisco (600)? Yes! 300 + 600 < ∞

500

∞ ∞
∞

∞ ∞

0

300

Graphs - Dijkstra Algorithm

46

So we change the cost of San Francisco to 600 + 300 = 900

500

∞ ∞
∞

∞

0

300
900

Graphs - Dijkstra Algorithm

47

Now Hong Kong has no more adjacent nodes, so we can set it as visited and
we go to the next adjacent nodes that has the lowest cost.

500

∞ ∞
∞

∞

0

300
900

Graphs - Dijkstra Algorithm

48

This node is Tokyo. Now we start exploring the nodes directly linked with
Tokyo.

500

∞ ∞
∞

∞

0

300
900

Graphs - Dijkstra Algorithm

49

We start with Detroit. Again we ask always the same questions: has Detroit
been visited? NO!

500

∞ ∞
∞

∞

0

300
900

Graphs - Dijkstra Algorithm

50

Is the cost of Detroit smaller than the cost to reach Tokyo plus the cost to go
from Tokyo to Detroit? YES because 500 + 450 < ∞ so we change the cost

500

∞ ∞
∞

∞

0

300
900

Graphs - Dijkstra Algorithm

51

Is the cost of Detroit smaller than the cost to reach Tokyo plus the cost to go
from Tokyo to Detroit? YES because 500 + 450 < ∞ so we change the cost

500

950 ∞
∞

∞

0

300
900

Graphs - Dijkstra Algorithm

52

Now again we ask the same question for Washington and we can see that
the cost of Washington becomes 500 + 300 = 800

500

950 ∞
∞

∞

0

300
900

Graphs - Dijkstra Algorithm

53

Now again we ask the same question for Washington and we can see that
the cost of Washington becomes 500 + 300 = 800

500

950 ∞
800

∞

0

300
900

Graphs - Dijkstra Algorithm

54

REMARK: as you can see Tokyo is linked with Singapore and Hong Kong but
we skip these nodes because they have been visited!

500

950 ∞
800

∞

0

300
900

Graphs - Dijkstra Algorithm

55

Now since Tokyo has no other adjacent nodes we can set it as visited and we
can select the adjacent node with the smallest cost.

500

950 ∞
800

∞

0

300
900

Graphs - Dijkstra Algorithm

56

Now since Tokyo has no other adjacent nodes we can set it as visited and we
can select the adjacent node with the smallest cost.

500

950 ∞
800

∞

0

300
900

Graphs - Dijkstra Algorithm

57

The node is Washington, and we start exploring the adjacent nodes. We
start from Austin. Again we ask the questions.

500

950 ∞
800

∞

0

300
900

Graphs - Dijkstra Algorithm

58

Has Austin been visited? NO!, is the cost of Austin lower than the cost of
Washington plus the cost of the link between Washington and Austin? YES

500

950 ∞
800

∞

0

300
900

Graphs - Dijkstra Algorithm

59

So we change the cost of Austin in 800 + 292 = 1092

500

950 1092

800

∞

0

300
900

Graphs - Dijkstra Algorithm

60

Same thing happen to Seattle. Please tell which is the cost of Seattle

500

950 1092

800

∞

0

300
900

Graphs - Dijkstra Algorithm

61

The cost of Seattle is 800 + 277 = 1077

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

62

We again explore San Francisco that has been explored BUT NOT MARKED
AS VISITED!

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

63

Now we try to see if it is possible to reach San Francisco though Washington
spending less than passing from Hong Kong

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

64

We check if the cost of Washington plus the cost to go from Washington to
San Francisco is smaller than the current cot of San Francisco.

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

65

800 + 337 = 1137 > 900 so it is not convenient and we do not change
anything

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

66

We set Washington as visited

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

67

We choose the node with the smallest cost that is San Francisco. Both Hong
Kong and Washington have been visited so we skip them.

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

68

We check is it is possible to reach Seattle through San Francisco spending
less than passing through Washington.

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

69

The cost of Seattle is 1077 < 900 + 218 = 1118 so we do not change
anything.

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

70

Now we check if it is possible to reach Austin from San Francisco spending
less than passing through Washington.

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

71

1092 < 900 + 297 = 1197 So even here we do not change anything. We set
San Francisco as visited

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

72

1092 < 900 + 297 = 1197 So even here we do not change anything. We set
San Francisco as visited

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

73

Now we go to Detroit and we try to see if reaching Austin through Detroit
cost less than reaching it through Washington

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

74

1092 > 950 + 50 = 1000 So YES it cost less to reach Austin from Detroit!!

500

950 1092

800
0

300
900

1077

Graphs - Dijkstra Algorithm

75

Now we can change the cost of Austin to 1000

500

950 1000

800
0

300
900

1077

Graphs - Dijkstra Algorithm

76

Since Tokyo has been visited we set Detroit has visited and we go to Austin

500

950 1000

800
0

300
900

1077

Graphs - Dijkstra Algorithm

77

Since every adjacent nodes of Austin has been visited we set it has visited!

500

950 1000

800
0

300
900

1077

Graphs - Dijkstra Algorithm

78

Since every adjacent nodes of Austin has been visited we set it has visited!

500

950 1000

800
0

300
900

1077

Graphs - Dijkstra Algorithm

79

Same thing happen to Seattle!

500

950 1000

800
0

300
900

1077

Graphs - Dijkstra Algorithm

80

Finished!

500

950 1000

800
0

300
900

1077

Graphs - Dijkstra Algorithm

81

We can draw the paths from Singapore to any other country that have the
least cost

500

950 1000

800
0

300
900

1077

Graphs - Dijkstra Algorithm

82

Pseudocode

Initialization

Graphs - Dijkstra Algorithm

83

Pseudocode

the process
we have done
in the
example

Graphs - Dijkstra Algorithm

84

Complexity:

If the queue is implemented using binary heaps the complexity
is: ⊝(|E| + |V| log |V|)

If the queue is implemented using fibonacci heaps the
complexity is: O(|E| + |V| log |V|)

