Algorithms A.Y. 2022/2023
 Lab - Graphs and Shortest Path

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©
19 April 2023

Dipartimento di Impresa e Management

Graphs

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

LUISS $\overline{\overline{m i n p}}$

Graphs

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

Graphs

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

Graphs

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

Edge

Graphs - Non Direct

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

$$
\begin{aligned}
& \mathbf{G}= \\
& \mathbf{V}=\text { ? } \\
& \mathbf{E}=?
\end{aligned}
$$

Graphs - Non Direct

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

$$
\begin{aligned}
& \mathbf{G}= \\
& \mathbf{V}=\{6,4,5,1,2,3\} \\
& \mathbf{E}=?
\end{aligned}
$$

Graphs - Non Direct

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

$$
\begin{aligned}
& \mathbf{G}= \\
& \quad \begin{array}{l}
\mathbf{V}=\{6,4,5,1,2,3\} \\
\mathbf{E}=\{(6,4),(4,5),(5,1),(5,2), \\
\\
\\
(2,1),(4,3),(3,2)\}
\end{array}
\end{aligned}
$$

Graphs - Direct

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

$$
\begin{aligned}
& \mathbf{G}= \\
& \mathbf{V}=? \\
& \mathbf{E}=?
\end{aligned}
$$

Graphs - Direct

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

$$
\begin{aligned}
& \mathbf{G}= \\
& \mathbf{V}=\{6,4,5,1,2,3\} \\
& \mathbf{E}=?
\end{aligned}
$$

Graphs - Direct

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

$$
\begin{aligned}
& \mathbf{G}= \\
& \quad \begin{array}{l}
\mathbf{V}=\{6,4,5,1,2,3\} \\
\mathbf{E}=\{(6,4),(4,3),(4,5),(3,2), \\
\\
\\
(5,2),(2,1),(5,1)\}
\end{array}
\end{aligned}
$$

REMEMBER: if the graph is direct it means that for any node $u, v \in V$, if $(u, v) \in E$ it is possible that $(v, u) \notin E$

Graphs - Direct

A Graph is a pair $G=(V, E)$ where \boldsymbol{V} is the set containing all the vertices, \boldsymbol{E} instead is the set of all the edges.

$$
\begin{aligned}
& \mathbf{G}= \\
& \mathbf{V}=\{6,4,5,1,2,3\} \\
& \mathbf{E}=\{(6,4),(4,3),(4,5),(3,2), \\
&(5,2),(2,1),(5,1)\}
\end{aligned}
$$

REMEMBER: Thus $(4,6) \neq(6,4)$

Graphs - How to represent a graph

There are many ways to represent a graph:
Adjacency matrix

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

LUISS $\overline{\overline{\min }}$

Graphs - How to represent a graph

There are many ways to represent a graph:
Adjacency matrix

	1	2	3	4	5	6
$\mathbf{1}$	-					
$\mathbf{2}$	1	-				
3	0	1	-			
$\mathbf{4}$	0	0	1	-		
$\mathbf{5}$	1	1	0	1	-	
$\mathbf{6}$	0	0	0	1	0	-

LUISS $\overline{\overline{m i n p}}$

Graphs - How to represent a graph

There are many ways to represent a graph:
Adjacency matrix

LUISS $\overline{\overline{\min }}$

Graphs - How to represent a graph

There are many ways to represent a graph:
Adjacency matrix

	1	2	3	4	5	6
1						
2		-				
3	0		-			
4	0	0	1	-		
5	1	1	0	1	-	
6	0	0	0	1	0	

The diagonal represents self-loops

Graphs - How to represent a graph

There are many ways to represent a graph:
Adjacency matrix

	1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	0					
$\mathbf{2}$	1	0				
$\mathbf{3}$	0	1	0			
$\mathbf{4}$	0	0	1	0		
$\mathbf{5}$	1	1	0	1	0	
$\mathbf{6}$	0	0	0	1	0	1

Self-loop

Graphs - Weights

Given an undirected graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ we can add weights on the edges

LUISS $\overline{\overline{\min }}$

Graphs - Path

Let's suppose that we have multiple destination and that we want to know which are the paths from a source location toward a destination that cost the least amount of money.

Graphs - Path

Let's suppose that we have multiple destination and that we want to know which are the paths from a source location toward a destination that cost the least amount of money.

Graphs - Path

How can we do that?

Graphs - Path

How can we do that?
Dijkstra algorithm!

Graphs - Dijkstra Algorithm

First of all we set all the distances to infinity for every node

Graphs - Dijkstra Algorithm

Starting from the source node (Here Singapore) we start changing the cost to reach any given node

Graphs - Dijkstra Algorithm

Starting from the source node (Here Singapore) we start changing the cost to reach any given node

LUISS $\overline{\overline{\mathrm{q}} \mathrm{II}}$

Graphs - Dijkstra Algorithm

Reach Singapore from Singapore costs 0 Dollars!

LUISS $\overline{\overline{m i n p}}$

Graphs - Dijkstra Algorithm

Reach Singapore from Singapore costs 0 Dollars! So we can change the cost to zero.

LUISS $\overline{\overline{m i n p}}$

Graphs - Dijkstra Algorithm

Now from here we have to explore the outgoing links from the current node.

Graphs - Dijkstra Algorithm

For each node adjacent to the current node we have to ask 2 things: it has been visited?

Graphs - Dijkstra Algorithm

For each node adjacent to the current node we have to ask 2 things: Is the cost to reach that node from the current node lower than the current cost?

Graphs - Dijkstra Algorithm

First of all we go to the Hong Kong node. The current cost of this node is infinity.

LUISS $\overline{\overline{i n i m}}$

Graphs - Dijkstra Algorithm

To reach that node from Singapore we have to add the cost to reach Singapore (0) and the cost of the link (300)

Graphs - Dijkstra Algorithm

Since $0+300=300<\infty$ then we change the cost of Hong Kong

LUISS $\overline{\overline{m i n p}}$

Graphs - Dijkstra Algorithm

Same thing happens for Tokyo.

LUISS $\overline{\overline{i n i m}}$

Graphs - Dijkstra Algorithm

We ask has Tokyo been visited? NO

LUISS $\overline{\overline{m i n}}$

Graphs - Dijkstra Algorithm

Is the cost of Tokyo smaller than the cost of Singapore plus the cost of the link between the two nodes? NO! Because $0+500<\infty$

Graphs - Dijkstra Algorithm

We can change the cost of Tokyo to 500

LUISS $\overline{\overline{m i n}}$

Graphs - Dijkstra Algorithm

Singapore has no other adjacent nodes so we can mark it as visited

Graphs - Dijkstra Algorithm

Now we have to select the node among the adjacent nodes of Singapore that has the smallest cost and it has not been visited yet

Graphs - Dijkstra Algorithm

So neither Hong Kong nor Tokyo has been visited. We select Hong Kong as next node to explore because of the cost.

Graphs - Dijkstra Algorithm

We start exploring the adjacent nodes of Hong Kong (Tokyo and San Francisco)

Graphs - Dijkstra Algorithm

Starting with Tokyo we always ask the two questions.

Graphs - Dijkstra Algorithm

Has Tokyo been visited? NO, Is the cost of Tokyo (500) smaller than the cost of Hong Kong plus the cost from Hong Kong to Tokyo? NO! $\mathbf{5 0 0}<\mathbf{3 0 0} \mathbf{+ 2 5 0}$

Graphs - Dijkstra Algorithm

So we do not modify anything. We explore San Francisco and ask alway the questions: has San Francisco been visited? NO!

Graphs - Dijkstra Algorithm

Is the cost of San Francisco smaller than the cost of Hong Kong (300) plus the cost from Hong Kong to San Francisco (600)? Yes! $300+600<\infty$

Graphs - Dijkstra Algorithm

So we change the cost of San Francisco to $600+300=900$

Graphs - Dijkstra Algorithm

Now Hong Kong has no more adjacent nodes, so we can set it as visited and we go to the next adjacent nodes that has the lowest cost.

Graphs - Dijkstra Algorithm

This node is Tokyo. Now we start exploring the nodes directly linked with Tokyo.

Graphs - Dijkstra Algorithm

We start with Detroit. Again we ask always the same questions: has Detroit been visited? NO!

Graphs - Dijkstra Algorithm

Is the cost of Detroit smaller than the cost to reach Tokyo plus the cost to go from Tokyo to Detroit? YES because $500+450<\infty$ so we change the cost

Graphs - Dijkstra Algorithm

Is the cost of Detroit smaller than the cost to reach Tokyo plus the cost to go from Tokyo to Detroit? YES because $500+450<\infty$ so we change the cost

Graphs - Dijkstra Algorithm

Now again we ask the same question for Washington and we can see that the cost of Washington becomes $500+300=800$

Graphs - Dijkstra Algorithm

Now again we ask the same question for Washington and we can see that the cost of Washington becomes $500+300=800$

Graphs - Dijkstra Algorithm

REMARK: as you can see Tokyo is linked with Singapore and Hong Kong but we skip these nodes because they have been visited!

LUISS $\overline{\overline{m i n p}}$

Graphs - Dijkstra Algorithm

Now since Tokyo has no other adjacent nodes we can set it as visited and we can select the adjacent node with the smallest cost.

Graphs - Dijkstra Algorithm

Now since Tokyo has no other adjacent nodes we can set it as visited and we can select the adjacent node with the smallest cost.

Graphs - Dijkstra Algorithm

The node is Washington, and we start exploring the adjacent nodes. We start from Austin. Again we ask the questions.

Graphs - Dijkstra Algorithm

Has Austin been visited? NO!, is the cost of Austin lower than the cost of Washington plus the cost of the link between Washington and Austin? YES

Graphs - Dijkstra Algorithm

So we change the cost of Austin in $800+292=1092$

LUISS $\overline{\overline{\min }}$

Graphs - Dijkstra Algorithm

Same thing happen to Seattle. Please tell which is the cost of Seattle

Graphs - Dijkstra Algorithm

The cost of Seattle is $800+277=1077$

Graphs - Dijkstra Algorithm

We again explore San Francisco that has been explored BUT NOT MARKED AS VISITED!

LUISS $\overline{\overline{\min }}$

Graphs - Dijkstra Algorithm

Now we try to see if it is possible to reach San Francisco though Washington spending less than passing from Hong Kong

Graphs - Dijkstra Algorithm

We check if the cost of Washington plus the cost to go from Washington to San Francisco is smaller than the current cot of San Francisco.

Graphs - Dijkstra Algorithm

$800+337=1137>900$ so it is not convenient and we do not change anything

LUISS $\overline{\overline{m i n p}}$

Graphs - Dijkstra Algorithm

We set Washington as visited

Graphs - Dijkstra Algorithm

We choose the node with the smallest cost that is San Francisco. Both Hong Kong and Washington have been visited so we skip them.

Graphs - Dijkstra Algorithm

We check is it is possible to reach Seattle through San Francisco spending less than passing through Washington.

Graphs - Dijkstra Algorithm

The cost of Seattle is $1077<900+218=1118$ so we do not change anything.

Graphs - Dijkstra Algorithm

Now we check if it is possible to reach Austin from San Francisco spending less than passing through Washington.

Graphs - Dijkstra Algorithm

$1092<900+297=1197$ So even here we do not change anything. We set San Francisco as visited

Graphs - Dijkstra Algorithm

$1092<900+297=1197$ So even here we do not change anything. We set San Francisco as visited

Graphs - Dijkstra Algorithm

Now we go to Detroit and we try to see if reaching Austin through Detroit cost less than reaching it through Washingto 1092

Graphs - Dijkstra Algorithm

$1092>950+50=1000$ So YES it cost less to reach Austin from Detroit!!

LUISS $\overline{\overline{\min }}$

Graphs - Dijkstra Algorithm

Now we can change the cost of Austin to 1000

Graphs - Dijkstra Algorithm

Since Tokyo has been visited we set Detroit has visited and we go to Austin

Graphs - Dijkstra Algorithm

Since every adjacent nodes of Austin has been visited we set it has visited!

Graphs - Dijkstra Algorithm

Since every adjacent nodes of Austin has been visited we set it has visited!

Graphs - Dijkstra Algorithm

Same thing happen to Seattle!

Graphs - Dijkstra Algorithm

Finished!

LUISS $\overline{\overline{\min }}$

Graphs - Dijkstra Algorithm

We can draw the paths from Singapore to any other country that have the least cost

Graphs - Dijkstra Algorithm

Pseudocode

Graphs - Dijkstra Algorithm

Pseudocode

Graphs - Dijkstra Algorithm

Complexity:

If the queue is implemented using binary heaps the complexity is: $\Theta(|E|+|V| \log |V|)$

If the queue is implemented using fibonacci heaps the complexity is: $\boldsymbol{O}(|\boldsymbol{E}|+|\boldsymbol{V}| \boldsymbol{\operatorname { l o g }}|\boldsymbol{V}|)$

