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Graphs
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A Graph is a pair G=(V, E) where V  is the set containing all the vertices, E  
instead is the set of all the edges.
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A Graph is a pair G=(V, E) where V  is the set containing all the vertices, E  
instead is the set of all the edges.

Vertex 
or node
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A Graph is a pair G=(V, E) where V  is the set containing all the vertices, E  
instead is the set of all the edges.

Edge
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A Graph is a pair G=(V, E) where V  is the set containing all the vertices, E  
instead is the set of all the edges.

G = 
V = ?
E = ?
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A Graph is a pair G=(V, E) where V  is the set containing all the vertices, E  
instead is the set of all the edges.

G = 
V = {6, 4, 5, 1, 2, 3}
E = ?
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A Graph is a pair G=(V, E) where V  is the set containing all the vertices, E  
instead is the set of all the edges.

G = 
V = {6, 4, 5, 1, 2, 3}
E = {(6, 4), (4, 5), (5, 1), (5, 2),

  (2, 1), (4, 3), (3, 2)} 
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A Graph is a pair G=(V, E) where V  is the set containing all the vertices, E  
instead is the set of all the edges.

G = 
V = ?
E = ?
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A Graph is a pair G=(V, E) where V  is the set containing all the vertices, E  
instead is the set of all the edges.

G = 
V = {6, 4, 5, 1, 2, 3}
E = ?
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A Graph is a pair G=(V, E) where V  is the set containing all the vertices, E  
instead is the set of all the edges.

G = 
V = {6, 4, 5, 1, 2, 3}
E = {(6, 4), (4, 3), (4, 5), (3, 2),

  (5, 2), (2, 1), (5, 1)}
REMEMBER: if the graph is direct it means that for any node 
u, v ∈ V, if (u, v) ∈ E it is possible that (v, u) ∉ E
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A Graph is a pair G=(V, E) where V  is the set containing all the vertices, E  
instead is the set of all the edges.

G = 
V = {6, 4, 5, 1, 2, 3}
E = {(6, 4), (4, 3), (4, 5), (3, 2),

  (5, 2), (2, 1), (5, 1)}
REMEMBER: Thus (4, 6) ≠ (6, 4)
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There are many ways to represent a graph:

Adjacency matrix

1 2 3 4 5 6

1

2

3

4

5

6
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There are many ways to represent a graph:

Adjacency matrix

1 2 3 4 5 6

1 -

2 1 -

3 0 1 -

4 0 0 1 -

5 1 1 0 1 -

6 0 0 0 1 0 -



Graphs - How to represent a graph
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There are many ways to represent a graph:

Adjacency matrix

1 2 3 4 5 6

1 -

2 1 -

3 0 1 -

4 0 0 1 -

5 1 1 0 1 -

6 0 0 0 1 0 -

?



Graphs - How to represent a graph
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There are many ways to represent a graph:

Adjacency matrix

1 2 3 4 5 6

1 -

2 1 -

3 0 1 -

4 0 0 1 -

5 1 1 0 1 -

6 0 0 0 1 0 -

The diagonal represents 
self-loops
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There are many ways to represent a graph:

Adjacency matrix

1 2 3 4 5 6

1 0

2 1 0

3 0 1 0

4 0 0 1 0

5 1 1 0 1 0

6 0 0 0 1 0 1

Self-loop
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Given an undirected graph G(V, E) we can add weights on the edges

1 2

4 7

5

5

1
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Let’s suppose that we have multiple destination and that we want to know 
which are the paths from a source location toward a destination that cost 
the least amount of money.
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Let’s suppose that we have multiple destination and that we want to know 
which are the paths from a source location toward a destination that cost 
the least amount of money.

Source

Destination
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How can we do that?

Source

Destination
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How can we do that?

Dijkstra algorithm!

Source

Destination



Graphs - Dijkstra Algorithm
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First of all we set all the distances to infinity for every node

∞

∞
∞

∞ ∞
∞

∞ ∞
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Starting from the source node (Here Singapore) we start changing the cost 
to reach any given node

∞

∞
∞

∞ ∞
∞

∞ ∞
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Starting from the source node (Here Singapore) we start changing the cost 
to reach any given node
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∞

∞ ∞
∞
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Reach Singapore from Singapore costs 0 Dollars!

∞

∞
∞

∞ ∞
∞
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Reach Singapore from Singapore costs 0 Dollars! So we can change the cost 
to zero.

∞

∞
∞

∞ ∞
∞

∞ ∞

0
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Now from here we have to explore the outgoing links from the current node.

∞
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∞ ∞
∞

∞ ∞
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For each node adjacent to the current node we have to ask 2 things: it has 
been visited?

∞

∞
∞

∞ ∞
∞

∞ ∞

0
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For each node adjacent to the current node we have to ask 2 things: Is the 
cost to reach that node from the current node lower than the current cost?
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∞

∞ ∞
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First of all we go to the Hong Kong node. The current cost of this node is 
infinity.

∞

∞
∞

∞ ∞
∞

∞ ∞

0



Graphs - Dijkstra Algorithm

32

To reach that node from Singapore we have to add the cost to reach 
Singapore (0) and the cost of the link (300)
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∞ ∞
∞

∞ ∞

0
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Since 0 + 300 = 300 < ∞ then we change the cost of Hong Kong
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300
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Same thing happens for Tokyo. 
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We ask has Tokyo been visited? NO
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Is the cost of Tokyo smaller than the cost of Singapore plus the cost of the 
link between the two nodes? NO! Because 0 + 500 < ∞ 
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We can change the cost of Tokyo to 500
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∞ ∞
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∞ ∞
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Singapore has no other adjacent nodes so we can mark it as visited
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300
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Now we have to select the node among the adjacent nodes of Singapore 
that has the smallest cost and it has not been visited yet
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∞

∞ ∞

0

300
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So neither Hong Kong nor Tokyo has been visited. We select Hong Kong as 
next node to explore because of the cost.
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∞

∞ ∞

0

300
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We start exploring the adjacent nodes of Hong Kong (Tokyo and San 
Francisco) 
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∞

∞ ∞

0

300
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Starting with Tokyo we always ask the two questions.

500

∞ ∞
∞

∞ ∞

0

300
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Has Tokyo been visited? NO, Is the cost of Tokyo (500) smaller than the cost 
of Hong Kong plus the cost from Hong Kong to Tokyo? NO! 500 < 300 + 250

500

∞ ∞
∞

∞ ∞

0

300
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So we do not modify anything. We explore San Francisco and ask alway the 
questions: has San Francisco been visited? NO!
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∞ ∞
∞

∞ ∞

0

300
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Is the cost of San Francisco smaller than the cost of Hong Kong (300) plus 
the cost from Hong Kong to San Francisco (600)? Yes! 300 + 600 < ∞

500

∞ ∞
∞

∞ ∞

0

300
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So we change the cost of San Francisco to 600 + 300 = 900
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∞ ∞
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∞
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900
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Now Hong Kong has no more adjacent nodes, so we can set it as visited and 
we go to the next adjacent nodes that has the lowest cost.
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This node is Tokyo. Now we start exploring the nodes directly linked with 
Tokyo.
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We start with Detroit. Again we ask always the same questions: has Detroit 
been visited? NO! 
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∞ ∞
∞

∞
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300
900
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Is the cost of Detroit smaller than the cost to reach Tokyo plus the cost to go 
from Tokyo to Detroit? YES because 500 + 450 < ∞ so we change the cost

500

∞ ∞
∞

∞

0

300
900
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Is the cost of Detroit smaller than the cost to reach Tokyo plus the cost to go 
from Tokyo to Detroit? YES because 500 + 450 < ∞ so we change the cost

500

950 ∞
∞

∞

0

300
900



Graphs - Dijkstra Algorithm

52

Now again we ask the same question for Washington and we can see that 
the cost of Washington becomes 500 + 300 = 800

500

950 ∞
∞

∞

0

300
900
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Now again we ask the same question for Washington and we can see that 
the cost of Washington becomes 500 + 300 = 800

500

950 ∞
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300
900
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REMARK: as you can see Tokyo is linked with Singapore and Hong Kong but 
we skip these nodes because they have been visited!
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Now since Tokyo has no other adjacent nodes we can set it as visited and we 
can select the adjacent node with the smallest cost.
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Now since Tokyo has no other adjacent nodes we can set it as visited and we 
can select the adjacent node with the smallest cost.
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The node is Washington, and we start exploring the adjacent nodes. We 
start from Austin. Again we ask the questions.
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Has Austin been visited? NO!, is the cost of Austin lower than the cost of 
Washington plus the cost of the link between Washington and Austin? YES
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950 ∞
800

∞

0

300
900
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So we change the cost of Austin in 800 + 292 = 1092

500

950 1092

800

∞

0

300
900



Graphs - Dijkstra Algorithm

60

Same thing happen to Seattle. Please tell which is the cost of Seattle
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The cost of Seattle is 800 + 277 = 1077

500

950 1092

800
0

300
900

1077
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We again explore San Francisco that has been explored BUT NOT MARKED 
AS VISITED!

500

950 1092

800
0

300
900

1077
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Now we try to see if it is possible to reach San Francisco though Washington 
spending less than passing from Hong Kong

500

950 1092

800
0

300
900

1077
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We check if the cost of Washington plus the cost to go from Washington to 
San Francisco is smaller than the current cot of San Francisco.

500

950 1092

800
0

300
900

1077
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800 + 337 = 1137 > 900 so it is not convenient and we do not change 
anything

500

950 1092
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0

300
900

1077
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We set Washington as visited

500

950 1092
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0

300
900
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We choose the node with the smallest cost that is San Francisco. Both Hong 
Kong and Washington have been visited so we skip them.
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We check is it is possible to reach Seattle through San Francisco spending 
less than passing through Washington.
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0

300
900

1077



Graphs - Dijkstra Algorithm

69

The cost of Seattle is 1077 < 900 + 218 = 1118 so we do not change 
anything.
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Now we check if it is possible to reach Austin from San Francisco spending 
less than passing through Washington.
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1092 < 900 + 297 = 1197 So even here we do not change anything. We set 
San Francisco as visited
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1092 < 900 + 297 = 1197 So even here we do not change anything. We set 
San Francisco as visited
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Now we go to Detroit and we try to see if reaching Austin through Detroit 
cost less than reaching it through Washington
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1092 > 950 + 50 = 1000 So YES it cost less to reach Austin from Detroit!!
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Now we can change the cost of Austin to 1000
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950 1000
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Since Tokyo has been visited we set Detroit has visited and we go to Austin
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Since every adjacent nodes of Austin has been visited we set it has visited!
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Since every adjacent nodes of Austin has been visited we set it has visited!
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Same thing happen to Seattle!
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Finished!
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We can draw the paths from Singapore to any other country that have the 
least cost
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950 1000
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900
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Pseudocode

Initialization
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Pseudocode

the process 
we have done 
in the 
example
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Complexity:

If the queue is implemented using binary heaps the complexity 
is: ⊝(|E| + |V| log |V|)

If the queue is implemented using fibonacci heaps the 
complexity is: O(|E| + |V| log |V|)


