
Lab – Binary Heaps and Applications

Algorithms A.Y. 2022/2023

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©

17 February 2023 courtesy of: Andrea Coletta

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Priority Queue

What is a priority queue?
A priority queue is a type of queue that arranges elements based on
their priority values.

101421275 77

0 1 2 3 4 5Index:

Value:

High priorityLow priority

Priority Queue

What is a priority queue?
A priority queue is a type of queue that arranges elements based on
their priority values.
Elements with higher priority values are (usually) retrieved before
elements with lower priority values.

Priority Queue

When a new element is added to the queue it is inserted in a
position based on its priority value.
Low priority values go to the back of the queue, high priority values
instead go to the front.

Priority Queue

What they are used for?
There is a wide variety of application for example:
Priority queuing is used to manage limited resources like bandwidth
in a network.
Priority queues allow us to prioritize traffic (such as real-time traffic
for streaming services).
For instance in modern protocols for local area networks (also known
as LAN) include priority queues at the media access control (MAC)
sub-layer to ensure that high-priority applications experience lower
latency than others.
One example is IEEE 802.11e standard also known as Wi-Fi

Priority Queue

What they are used for?
Operating systems also use priority queues to decide which process
will run on the CPU.
There are many mechanisms for example Shortest Job First, Longest
Job First and other similar policy.

Priority Queue
We might imagine that since a priority queue is a queue with
priorities, we should be able to implement it using a simple list.
Is it possible to do that?

Priority Queue
We might imagine that since a priority queue is a queue with
priorities, we should be able to implement it using a simple list.
Is it possible to do that? YES!

Priority Queue
We might imagine that since a priority queue is a queue with
priorities, we should be able to implement it using a simple list.
Is it possible to do that? YES!
In that case the maximum value (i.e., the highest-priority item)
will be the first item of the list, and so is readily available in
constant (i.e. 𝑂(1)) time. Same thing for the minimum value.

Priority Queue
What if we have to add a value to the queue?

Priority Queue
What if we have to add a value to the queue?
It would be pretty expensive, in fact the worst case takes linear
time (i.e. 𝑂(𝑛))

Priority Queue
What if we have to add a value to the queue?
It would be pretty expensive, in fact the worst case takes linear
time (i.e. 𝑂(𝑛))
It does not seem to be the most efficient solution!

Heaps
To be more efficient we can use a data structure called Heap.
An heap is a tree-based data structure that satisfies the heap
property: in a max heap, for any given node C, if P is a parent
node of C, then the key (the value) of P is greater than or equal
to the key of C. In a min heap, the key of P is less than or equal
to the key of C

The node at the "top" of the heap (with no parents) is called
the root node.

Heaps
Root

Heaps
P (parent)

Heaps
P (parent)

C (child)C (child)

Heaps
P (parent)

C (child)C (child)

The Heap Property here is verified!

Heaps

C (child)

P (parent)

C (child)

Heaps

C (child)

P (parent)

C (child)

The Heap Property here is verified!

Heaps

It is easy to see in this case that the Heap
Property is verified in the entire Heap

Heaps – Common Operations

create-heap: create a heap out of given array of elements
insert: adding a new key to the heap
delete: delete an arbitrary node

Heaps – Heapify

Heapify is a recursive function that create a heap data
structure starting from a binary tree represented using
an list.

Heaps – Heapify

Heapify is a recursive function that enforce the
max(min)-heap property starting from a binary tree
represented using an list.
How can we represent a binary tree using a list?
Given an element with index P (the parent) then the left
child will be stored at index 2P + 1 and the right
child will be stored at index 2P + 2.

Heaps – Heapify

25173619100 3

0 1 2 3 4 5Index:

Value:

6

1

P (parent)

Heaps – Heapify

25173619100 3

0 1 2 3 4 5Index:

Value:

6

1

C (children)

P (parent)

Heaps – Heapify

25173619100 3

0 1 2 3 4 5Index:

Value:

6

1

P (parent)

Heaps – Heapify

25173619100 3

0 1 2 3 4 5Index:

Value:

6

1

P (parent)

C (child)

C (child)

Heaps – Heapify

25173619100 3

0 1 2 3 4 5Index:

Value:

6

1

P (parent)

Heaps – Heapify

25173619100 3

0 1 2 3 4 5Index:

Value:

6

1

P (parent)

C (child)

C (child)

Heaps – Heapify

25173619100 3

0 1 2 3 4 5Index:

Value:

6

1

P (parent)

C (child)

C (child)

And so on…

Heaps – Heapify
def Heapify(list, index):

le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify
The input list

The index of the current element
def Heapify(list, index):

le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

The index of the left element given
the current index (2*index +1)

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

The index of the right element given
the current index (2*index +2)

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

Check if the le is within the bound of the
heap

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

If the left child of the element is bigger
than the parent element

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

Then the largest element up to now is
the left child

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

Then the largest element up to now is
the left child

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

Check again if the right side is within the
heap boundaries

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

Check if the right child is larger than the
Largest value found up to noe

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

If that is true then use as largest
value the right child

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

If the largest value is not the
current root then

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify

Swap the root and the largest
element found

def Heapify(list, index):
le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Heaps – Heapify
def Heapify(list, index):

le <- left(index)
ri <- right(index)
if (le<=heapsize) and (list[le]>list[index])

largest <- le
else

largest <- index
if (ri<=heapsize) and (list[ri]>list[largest])

largest <- ri
if (largest != index)

swap list[index] with list[largest]
Heapify(list, largest)

Recursively call the function

Heaps – How to build an Heap

51274277 101

0 1 2 3 4 5Index:

Value:

77

42 7

12 101 5

51274277 101

0 1 2 3 4 5Index:

Value:

77

42 7

12 101 5

Is it a Max-Heap?

Heaps – How to build an Heap

51274277 101

0 1 2 3 4 5Index:

Value:

77

42 7

12 101 5

Is it a Max-Heap?
Clearly not!

Heaps – How to build an Heap

51274277 101

0 1 2 3 4 5Index:

Value:

We can use heapify to enforce the property
starting from the bottom and going up

77

42 7

12 101 5

Heaps – How to build an Heap

51274277 101

0 1 2 3 4 5Index:

Value:

You can think to the procedure as we check all the
sub-trees starting from the bottom tree

77

42 7

12 101 5 1

Heaps – How to build an Heap

51274277 101

0 1 2 3 4 5Index:

Value:

You can think to the procedure as we check all the
sub-trees starting from the bottom tree

77

42 7

12 101 52

Heaps – How to build an Heap

51274277 101

0 1 2 3 4 5Index:

Value:

You can think to the procedure as we check all the
sub-trees starting from the bottom tree

77

42 7

12 101 5 3

Heaps – How to build an Heap

51274277 101

0 1 2 3 4 5Index:

Value:

Is the root of the tree (index = 2) grater than the left
side element? Yes! We can pass at the next sub tree

77

42 7

12 101 5

Heaps – How to build an Heap

51274277 101

0 1 2 3 4 5Index:

Value:

We can use heapify to enforce the property
starting from the bottom and going up

Is the root of the tree (index = 1) grater than the left
side element? Yes!

77

42 7

12 101 5

Heaps – How to build an Heap

512710177 42

0 1 2 3 4 5Index:

Value:

We can use heapify to enforce the property
starting from the bottom and going up

Is the root of the tree (index = 1) grater than the right
side element? No!

Swap the elements!

77

101 7

12 42 5

Heaps – How to build an Heap

512710177 42

0 1 2 3 4 5Index:

Value:

Is the root of the tree (index = 0) grater than the right
side element? No! the left side is grater? No!

Swap the elements!

77

101 7

12 42 5

Heaps – How to build an Heap

512777101 42

0 1 2 3 4 5Index:

Value:

Is the root of the tree (index = 0) grater than the right
side element? No! the left side is grater? No!

Swap the elements!

101

77 7

12 42 5

Heaps – How to build an Heap

512777101 42

0 1 2 3 4 5Index:

Value:

Now since the order changed we have to call again
heapify on index = 1 why?

101

77 7

12 42 5

Heaps – How to build an Heap

512777101 42

0 1 2 3 4 5Index:

Value:

Now since the order changed we have to call again
heapify on index = 1 why?

Because after the swap the max-heap property could
not hold anymore even if we checked it before!

101

77 7

12 42 5

Heaps – How to build an Heap

512777101 42

0 1 2 3 4 5Index:

Value:

So again we have to check if the sub-tree (red triangle)
is a max-heap

101

77 7

12 42 5

Heaps – How to build an Heap

512777101 42

0 1 2 3 4 5Index:

Value:

So again we have to check if the sub-tree (red triangle)
is a max-heap

Even if we swapped the elements, the property for the
sub-tree still holds so the procedure ends.

101

77 7

12 42 5

Heaps – How to build an Heap

512777101 42

0 1 2 3 4 5Index:

Value:

Suppose we want to add an element to the heap101

77 7

12 42 5

Heaps – Insert an element

6

6

6

11

7

11

8

110

512777101 42

0 1 2 3 4 5Index:

Value:

We put the element at the end of the list, so
It will be the last leaf of the tree.

101

77 7

12 42 5

Heaps – Insert an element

6

6

6

11

7

11

8

110

110

512777101 42

0 1 2 3 4 5Index:

Value:

The we start comparing the element with its parent!

If the parent is smaller than we swap the elements!

101

77 7

12 42 5

Heaps – Insert an element

6

6

6

11

7

11

8

110

110

Heaps – Insert an element

5 12777101 42

0 1 2 3 4 5Index:

Value:

The we start comparing the element with its parent!

If the parent is smaller than we swap the elements!

101

77 7

12

42 5 6

6

6

11

7

11

8

110

110

5 12777101 42

0 1 2 3 4 5Index:

Value:

We repeat the process over and over until we reach
The final position

101

77 7

12

42 5

Heaps – Insert an element

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

We repeat the process over and over until we reach
The final position

101

77

7

12

42 5

Heaps – Insert an element

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

We repeat the process over and over until we reach
The final position

101

77

7

12

42 5

Heaps – Insert an element

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

We repeat the process over and over until we reach
The final position

DONE!

How many operation we did to place the new element
In the correct position?

101

77

7

12

42 5

Heaps – Insert an element

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

We repeat the process over and over until we reach
The final position

DONE!

How many operation we did to place the new element
In the correct position?

O(log n)

101

77

7

12

42 5

Heaps – Insert an element

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

Where is the maximum element?

101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

Where is the maximum element?

It is the root so it is in position 0

Cost?

101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

Where is the maximum element?

It is the root so it is in position 0

Cost? O(1)

101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

What is the cost to extract the maximum value?

101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

What is the cost to extract the maximum value?

O(log n)101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

What is the cost to extract the maximum value?

O(log n)

Why?

101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

First of all we have to remove the element in position
0, namely, the grater element

101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

8

110

110

5 127 77101 42

0 1 2 3 4 5Index:

Value:

First of all we have to remove the element in position
0, namely, the grater element

Then we have to place the last element of the list
on top of the list

101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

8

512 7 77101 42

0 1 2 3 4 5Index:

Value:

First of all we have to remove the element in position
0, namely, the grater element

Then we have to place the last element of the list
on top of the list

101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

8

512 7 77101 42

0 1 2 3 4 5Index:

Value:

First of all we have to remove the element in position
0, namely, the grater element

Then we have to place the last element of the list
on top of the list

And we can shrink the list

101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

512 7 77101 42

0 1 2 3 4 5Index:

Value:

Finally we have to call max-heapify on the list starting
From the first element

101

77

7

12

42 5

Heaps – Max

6

6

6

11

7

11

512 7 77101 42

0 1 2 3 4 5Index:

Value:

Finally we have to call max-heapify on the list starting
From the first element

101

77

712

42 5

Heaps – Max

6

6

6

11

7

11

512777101 42

0 1 2 3 4 5Index:

Value:

Finally we have to call max-heapify on the list starting
From the first element

Until the final position is reached!

101

77 7

12 42 5

Heaps – Max

6

6

6

11

7

11

512777101 42

0 1 2 3 4 5Index:

Value:

This is basically a single iteration of the heap-sort!101

77 7

12 42 5

Heaps – Max

6

6

6

11

7

11

