
Lab - Quick Sort

Algorithms A.Y. 2022/2023

Irene Finocchi, Flavio Giorgi, Bardh Prenkaj
finocchi@luiss.it, fgiorgi@luiss.it, bprenkaj@luiss.it©

17 February 2023 courtesy of: Andrea Coletta

mailto:finocchi@luiss.it
mailto:fgiorgi@luiss.it
mailto:bprenkaj@luiss.it

Quick sort – a step by step example

Quick sort is another divide-and-conquer recursive algorithm.

It is very efficient.

And can be even optimized!

It can be used for the project along with the other algorithm we saw!

Quick sort – a step by step example
The goal of Quick Sort is to partition the list into two sub-list

Quick sort – a step by step example
The goal of Quick Sort is to partition the list into two sub-list

Quick sort – a step by step example
The goal of Quick Sort is to partition the list into two sub-list

pivot

Quick sort – a step by step example
The goal of Quick Sort is to partition the list into two sub-list

pivot
Elements < pivot

Quick sort – a step by step example
The goal of Quick Sort is to partition the list into two sub-list

pivot
Elements < pivot Elements > pivot

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot:

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: The pivot can be a random position in the list
Anyway there are clever ways to choose it!

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: A common choice is the last element of the
array!

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Now we start comparing the elements in the list with the pivot
starting from index i = 0

i

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Is the element in i = 0 grater or smaller than the element at
the pivot?

i

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

It is grater!

i

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Now we can declare another pointer j to keep track of the
element that is grater than the pivot element

i

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Now we can declare another pointer j to keep track of the
element that is grater than the pivot element

i j

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Now we can declare another pointer j to keep track of the
element that is grater than the pivot element

i j

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Next iteration we increase i = 1

ij

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Again is 42 grater or smaller than 5?

ij

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Again is 42 grater or smaller than 5?
It is grater so we increase i again

ij

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Same here, is 7 grater or smaller than 5?
It is grater!
So we increase again the i pointer

ij

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Until we reach 101 because the the same reasoning holds for
all the elements!

ij

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

Now, the j pointer points at the first grater number we found
in the list!

ij

Quick Sort: an example

51274277 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

In order to order the list we have to swap the element at the
j-th position with the element at the pivot position!

ij

Quick Sort: an example

77127425 101

0 1 2 3 4 5Index:

Value:

pivot: 5 pivot

In order to order the list we have to swap the element at the
j-th position with the element at the pivot position!

ij

Quick Sort: an example

77127425 101

0 1 2 3 4 5Index:

Value:

pivot: 5

Now the element that was the pivot is used to split in two
sub-lists the original list

Quick Sort: an example

77127425 101

0 1 2 3 4 5Index:

Value:

pivot: 5

Since it is at the beginning of the list, we won’t get the left
side sub-list.

Elements > pivot

Quick Sort: an example

77127425 101

0 1 2 3 4 5Index:

Value:

pivot: 5

After the first iteration we have three properties:
1) The element that was the pivot is in its final position
2) Every element in the right side list is grater than the pivot
3) Every element in the left side of the list is smaller than the
pivot

Elements > pivot

Quick Sort: an example
Index:

Value:

pivot: 5

Again, we select the last element of the list as a pivot

pivot
ij

77127425 101

0 1 2 3 4 5

Quick Sort: an example
Index:

Value:

pivot: 5

We ask: Is 42 grater or smaller than 77?
It is clearly smaller!
We increase both j and i index

pivot
ij

77127425 101

0 1 2 3 4 5

Quick Sort: an example
Index:

Value:

pivot: 5

We ask: Is 7 grater or smaller than 77?
It is clearly smaller!
We increase both j and i index again

pivot
ij

77127425 101

0 1 2 3 4 5

Quick Sort: an example
Index:

Value:

pivot: 5

We ask: Is 7 grater or smaller than 77?
It is clearly smaller!
We increase both j and i index again

pivot
ij

77127425 101

0 1 2 3 4 5

Quick Sort: an example
Index:

Value:

pivot: 5

We ask: Is 12 grater or smaller than 77?
It is clearly smaller!
We increase both j and i index again

pivot

77127425 101

0 1 2 3 4 5

ij

Quick Sort: an example
Index:

Value:

pivot: 5

We ask: Is 12 grater or smaller than 77?
It is clearly smaller!
We increase both j and i index again

pivot

77127425 101

0 1 2 3 4 5

ij

Quick Sort: an example
Index:

Value:

pivot: 5

We ask: Is 101 grater or smaller than 77?
It is clearly grater!
So j = 4, also i = 4 because we cannot go further!

pivot

77127425 101

0 1 2 3 4 5

ij

Quick Sort: an example
Index:

Value:

pivot: 5

Now we swap the pivot with the element at position j=4

pivot

77127425 101

0 1 2 3 4 5

ij

Quick Sort: an example
Index:

Value:

pivot: 5

Now we get two sub-lists, the left side and the right side.

101127425 77

0 1 2 3 4 5

Elements < pivot Elements > pivot

Quick Sort: an example
Index:

Value:

pivot: 5

Again, the element that was the pivot (77) is now in its final
position in the array along with 5

101127425 77

0 1 2 3 4 5

Quick Sort: an example
Index:

Value:

pivot: 3

Starting from the left side list we chose always as pivot the last
element.
Remember: it could be any index inside the sub-list!

101127425 77

0 1 2 3 4 5

pivotij

Quick Sort: an example
Index:

Value:

pivot: 3

Is 42 grater or smaller than 12?
It is grater! So i = 2 j = 1

101127425 77

0 1 2 3 4 5

pivotij

Quick Sort: an example
Index:

Value:

pivot: 3

Is 7 grater or smaller than 12?
It is smaller!

101127425 77

0 1 2 3 4 5

pivotij

Quick Sort: an example
Index:

Value:

pivot: 3

So we have to swap 42 and 7 because 42 is larger than 7 and
7 is smaller than 12

101127425 77

0 1 2 3 4 5

pivotij

Quick Sort: an example
Index:

Value:

pivot: 3

And then we increase the j pointer j = 2

101124275 77

0 1 2 3 4 5

pivotij

Quick Sort: an example
Index:

Value:

pivot: 3

Since we reached the end of the sub-list so we need to swap
the element at position j with the pivot

101124275 77

0 1 2 3 4 5

pivotij

Quick Sort: an example
Index:

Value:

pivot: 3

Since we reached the end of the sub-list so we need to swap
the element at position j with the pivot

101421275 77

0 1 2 3 4 5

pivotij

Quick Sort: an example
Index:

Value:

pivot: -

In both the resulting sub-list we just return the value as it is
because they are both a single element list

101421275 77

0 1 2 3 4 5

Elements > pivotElements < pivot

Quick Sort: an example
Index:

Value:

pivot: 3

Finally, the right side list (101) that we got before is again a
single element list and have to be there.

101421275 77

0 1 2 3 4 5

Quick Sort: an example
Index:

Value:

pivot: 3

The array is finally sorted!

101421275 77

0 1 2 3 4 5

Quick Sort
Index:

Value:

Two Questions:
1) What is the main factor that influences the number of steps

we have to do?

101421275 77

0 1 2 3 4 5

Quick Sort
Index:

Value:

Two Questions:
1) What is the main factor that influences the number of steps

we have to do?
2) In the worst case how many steps we have to do to sort the

list?

101421275 77

0 1 2 3 4 5

Quick Sort: clever ways to chose the pivot

The pivot has a huge impact on the performances!

Quick Sort: clever ways to chose the pivot

The pivot has a huge impact on the performances!
We can find a way to chose it wisely!
Our goal is to ideally find a pivot that can split in half the list
each time!

Quick Sort: clever ways to chose the pivot

The pivot has a huge impact on the performances!
We can find a way to chose it wisely!
Our goal is to ideally find a pivot that can split in half the list
each time!
Why?

Quick Sort: clever ways to chose the pivot

Splitting in half the array each time give us an advantage
from a computational perspective!

Quick Sort: clever ways to chose the pivot

In fact the overall complexity in that case would be
O(n log n)

Quick Sort: clever ways to chose the pivot

Given a list of n elements we can partition the list in chunks
containing 5 elements

1° chunk 2° chunk 3° chunk

Quick Sort: clever ways to chose the pivot

Then for each one of these chunks we compute the median
values and we call them 𝑚!, 𝑚", 𝑚#

1° chunk 2° chunk 3° chunk

𝒎𝟏 𝒎𝟐 𝒎𝟑

Quick Sort: clever ways to chose the pivot

Once we have 𝑚!, 𝑚", 𝑚# we can compute again the median
value among these values and we take the median as pivot

1° chunk 2° chunk 3° chunk

𝒎𝟏 𝒎𝟐 𝒎𝟑

Quick Sort: clever ways to chose the pivot

Doing so quick sort complexity becomes O(n log n)
But why?

1° chunk 2° chunk 3° chunk

𝒎𝟏 𝒎𝟐 𝒎𝟑

Quick Sort: clever ways to chose the pivot

Doing so quick sort complexity becomes O(n log n)
But why?

1° chunk 2° chunk 3° chunk

𝒎𝟏 𝒎𝟐 𝒎𝟑

Quick Sort: clever ways to chose the pivot

The median value is the value that separate in half the
distribution

smaller grater
median

2 10 15 30 50

Quick Sort: clever ways to chose the pivot

If we partition a list in chunks with 5 elements and we take
the median values we get

𝒏
𝟓

elements: all the medians

smaller grater
median

2 10 15 30 50

Quick Sort: clever ways to chose the pivot

If we select again the median of the medians, we can
conclude that the chosen value is larger than half of the
median values, and smaller of the other half.

smaller grater
median

2 10 15 30 50

Quick Sort: clever ways to chose the pivot

But this in turn means that it is also larger than (at least) half
the elements contained in the chunks with smaller medians

smaller grater
median

2 10 15 30 50

Quick Sort: clever ways to chose the pivot

And it is smaller than (at least) half the elements contained
in the chunks with smaller medians

smaller grater
median

2 10 15 30 50

Quick Sort: clever ways to chose the pivot

Doing so we can halve (approximately) each time the size of
the input obtaining in this way a complexity of O(n log n)

