Unifying Evolution, Explanation, and Discernment: A Generative Approach for Dynamic Graph Counterfactuals

Bardh Prenkaj Post-doc in Al bardh.prenkaj@tum.de

Class Representation Experts

Variational Autoencoders

We consider the following generative model where the graphs G are generated from factored latent representation and the true class label \boldsymbol{y}

$$p\left(G|y
ight) = \int_{\mathbf{z}\in\mathcal{Z}} p\left(G|\mathbf{z},y
ight) p\left(\mathbf{z}|y
ight) dz$$

Variational Autoencoders (Decoder)

To represent p (G | y), we use a single VGAE for each class $y \in Y$, which is dependent on the class where each node has a latent vector and then define

$$egin{aligned} p_{ heta_y}\left(G|\mathbf{z},y
ight) &= p_{ heta_y}\left(\mathbf{A},\mathbf{X}|\mathbf{z},y
ight) \ &= p_{ heta_y}\left(\mathbf{X}|\mathbf{A},\mathbf{z},y
ight)p_{ heta_y}\left(\mathbf{A}|\mathbf{z},y
ight) \end{aligned}$$

Variational Autoencoders (Encoder)

$$egin{aligned} q_{arphi_{y}}\left(\mathbf{z}|G,y
ight) &= \prod_{v_{i}} q_{arphi_{y}}\left(\mathbf{z}_{v_{i}}|G,y
ight) \ &> 0 ext{ and fixed hyperparameter} \ q\left(z_{v_{i}}|G,y
ight) &= \mathcal{N}\left(z_{v_{i}}|\mu_{v_{i}}, \gamma^{2}\mathbf{I}
ight), \ &+ \left[\mu_{v_{1}}, \ldots, \mu_{v_{n}}
ight] &= \operatorname{GCN}_{arphi_{y}}\left(G
ight) \end{aligned}$$

>

Training GRACIE

$$- ext{ELBO}_y\left(heta_y,arphi_y
ight) = \mathcal{L}_{rec} + \mathcal{L}_{dist}
onumber \ = rac{1}{2}\left(\mathop{\mathbb{E}}_{q_{arphi_y}(\mathbf{z}|G)} \left[rac{||g_{ heta_y}(\mathbf{z}) - G||_2^2}{\sigma^2}
ight] + ||f_{arphi_y}(G)||_2^2
ight)$$

Inference & Update

GRACIE is SoTA

GRACIE	0.600	0.442	0.440	0.284	0.441
DyGRACE	0.525	0.307	0.232	0.000^\dagger	0.232
G-CounteRGAN	0.507	0.256	0.236	×	0.404
CLEAR	0.458	0.024	0.214	0.125	0.000
MEG	0.250	0.209	×	0.260	0.120^{\dagger}
BDDS	0.465	0.381	0.360^{\dagger}	0.235	0.136
	DTC	DBLP	BTC- α	BTC- β	BNZ

^aThe criterion of non-convergence is to fail to produce at least one counterfactual within 14 days of execution on an HPC SGE Cluster of 6 nodes with 360 cumulative cores, 1.2Tb of RAM, and two GPUs (i.e., one Nvidia A30 and one A100).

More sampling = more validity

Qualitative on BTC- β

GRACIE vs BDDS

Thank you!

Come to my poster (#10 today at <u>13:00</u>)

